Properties

Label 112632m
Number of curves 11
Conductor 112632112632
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("m1") E.isogeny_class()
 

Elliptic curves in class 112632m

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
112632.l1 112632m1 [0,1,0,155312,23507268][0, -1, 0, -155312, -23507268] 1120816166918692/1601613-1120816166918692/1601613 592058668032-592058668032 [][] 342144342144 1.53021.5302 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 112632m1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331+T1 + T
13131+T1 + T
191911
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 12T+5T2 1 - 2 T + 5 T^{2} 1.5.ac
77 1+7T2 1 + 7 T^{2} 1.7.a
1111 1+11T2 1 + 11 T^{2} 1.11.a
1717 12T+17T2 1 - 2 T + 17 T^{2} 1.17.ac
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+6T+29T2 1 + 6 T + 29 T^{2} 1.29.g
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 112632m do not have complex multiplication.

Modular form 112632.2.a.m

Copy content sage:E.q_eigenform(10)
 
qq3+2q5+q93q11q132q15+5q17+O(q20)q - q^{3} + 2 q^{5} + q^{9} - 3 q^{11} - q^{13} - 2 q^{15} + 5 q^{17} + O(q^{20}) Copy content Toggle raw display