Properties

Label 112896dt
Number of curves 44
Conductor 112896112896
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("dt1")
 
E.isogeny_class()
 

Elliptic curves in class 112896dt

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
112896.dj3 112896dt1 [0,0,0,3234,68600][0, 0, 0, -3234, -68600] 85184/385184/3 131736761856131736761856 [2][2] 9216092160 0.904550.90455 Γ0(N)\Gamma_0(N)-optimal
112896.dj4 112896dt2 [0,0,0,1176,241472][0, 0, 0, 1176, -241472] 64/964/9 25293458276352-25293458276352 [2][2] 184320184320 1.25111.2511  
112896.dj1 112896dt3 [0,0,0,285474,58707880][0, 0, 0, -285474, 58707880] 58591911104/24358591911104/243 1067067771033610670677710336 [2][2] 460800460800 1.70931.7093  
112896.dj2 112896dt4 [0,0,0,281064,60609472][0, 0, 0, -281064, 60609472] 873722816/59049-873722816/59049 165950379751145472-165950379751145472 [2][2] 921600921600 2.05582.0558  

Rank

sage: E.rank()
 

The elliptic curves in class 112896dt have rank 00.

Complex multiplication

The elliptic curves in class 112896dt do not have complex multiplication.

Modular form 112896.2.a.dt

sage: E.q_eigenform(10)
 
q+2q54q132q174q19+O(q20)q + 2 q^{5} - 4 q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(12510211055101210521)\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.