E = EllipticCurve("dt1")
E.isogeny_class()
Elliptic curves in class 112896dt
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
112896.dj3 |
112896dt1 |
[0,0,0,−3234,−68600] |
85184/3 |
131736761856 |
[2] |
92160 |
0.90455
|
Γ0(N)-optimal |
112896.dj4 |
112896dt2 |
[0,0,0,1176,−241472] |
64/9 |
−25293458276352 |
[2] |
184320 |
1.2511
|
|
112896.dj1 |
112896dt3 |
[0,0,0,−285474,58707880] |
58591911104/243 |
10670677710336 |
[2] |
460800 |
1.7093
|
|
112896.dj2 |
112896dt4 |
[0,0,0,−281064,60609472] |
−873722816/59049 |
−165950379751145472 |
[2] |
921600 |
2.0558
|
|
The elliptic curves in class 112896dt have
rank 0.
The elliptic curves in class 112896dt do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛12510211055101210521⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.