Properties

Label 113256bo
Number of curves $4$
Conductor $113256$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bo1")
 
E.isogeny_class()
 

Elliptic curves in class 113256bo

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
113256.q3 113256bo1 \([0, 0, 0, -7986, 158389]\) \(2725888/1053\) \(21758652341712\) \([2]\) \(184320\) \(1.2582\) \(\Gamma_0(N)\)-optimal
113256.q2 113256bo2 \([0, 0, 0, -56991, -5124350]\) \(61918288/1521\) \(502866631897344\) \([2, 2]\) \(368640\) \(1.6048\)  
113256.q4 113256bo3 \([0, 0, 0, 8349, -16192946]\) \(48668/85683\) \(-113312614387534848\) \([2]\) \(737280\) \(1.9514\)  
113256.q1 113256bo4 \([0, 0, 0, -906411, -332151050]\) \(62275269892/39\) \(51576064809984\) \([2]\) \(737280\) \(1.9514\)  

Rank

sage: E.rank()
 

The elliptic curves in class 113256bo have rank \(0\).

Complex multiplication

The elliptic curves in class 113256bo do not have complex multiplication.

Modular form 113256.2.a.bo

sage: E.q_eigenform(10)
 
\(q - 2 q^{5} - q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.