Properties

Label 1141a1
Conductor 11411141
Discriminant 2739541-2739541
j-invariant 21818250732739541 -\frac{2181825073}{2739541}
CM no
Rank 22
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x327x+94y^2+xy=x^3-27x+94 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x327xz2+94z3y^2z+xyz=x^3-27xz^2+94z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x335019x+4490694y^2=x^3-35019x+4490694 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 0, -27, 94])
 
gp: E = ellinit([1, 0, 0, -27, 94])
 
magma: E := EllipticCurve([1, 0, 0, -27, 94]);
 
oscar: E = elliptic_curve([1, 0, 0, -27, 94])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ\Z \oplus \Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(9,20)(9, 20)0.0741144451654121294536105681750.074114445165412129453610568175\infty
(23,97)(23, 97)1.66663985235325006154675160851.6666398523532500615467516085\infty

Integral points

(6,10) \left(-6, 10\right) , (6,4) \left(-6, -4\right) , (5,13) \left(-5, 13\right) , (5,8) \left(-5, -8\right) , (2,6) \left(2, 6\right) , (2,8) \left(2, -8\right) , (3,5) \left(3, 5\right) , (3,8) \left(3, -8\right) , (5,7) \left(5, 7\right) , (5,12) \left(5, -12\right) , (9,20) \left(9, 20\right) , (9,29) \left(9, -29\right) , (23,97) \left(23, 97\right) , (23,120) \left(23, -120\right) , (58,412) \left(58, 412\right) , (58,470) \left(58, -470\right) , (177,2267) \left(177, 2267\right) , (177,2444) \left(177, -2444\right) , (317,5487) \left(317, 5487\right) , (317,5804) \left(317, -5804\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  1141 1141  = 71637 \cdot 163
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  2739541-2739541 = 175163-1 \cdot 7^{5} \cdot 163
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  21818250732739541 -\frac{2181825073}{2739541}  = 175163112973-1 \cdot 7^{-5} \cdot 163^{-1} \cdot 1297^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.071379296175285181851153788884-0.071379296175285181851153788884
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.071379296175285181851153788884-0.071379296175285181851153788884
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.82908607353808250.8290860735380825
Szpiro ratio: σm\sigma_{m} ≈ 3.21848873493836333.2184887349383633

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 2 2
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 2 2
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.123412280632018694933789038750.12341228063201869493378903875
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 2.30769797868258271724392589632.3076979786825827172439258963
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 5 5  = 51 5\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(2)(E,1)/2! L^{(2)}(E,1)/2! ≈ 1.42399135279558597105988528881.4239913527955859710598852888
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.423991353L(2)(E,1)/2!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor212.3076980.1234125121.423991353\displaystyle 1.423991353 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 2.307698 \cdot 0.123412 \cdot 5}{1^2} \approx 1.423991353

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   1141.2.a.a

qq22q3q43q5+2q6+q7+3q8+q9+3q10q11+2q126q13q14+6q15q167q17q186q19+O(q20) q - q^{2} - 2 q^{3} - q^{4} - 3 q^{5} + 2 q^{6} + q^{7} + 3 q^{8} + q^{9} + 3 q^{10} - q^{11} + 2 q^{12} - 6 q^{13} - q^{14} + 6 q^{15} - q^{16} - 7 q^{17} - q^{18} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 280
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
77 55 I5I_{5} split multiplicative -1 1 5 5
163163 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 2, 1], [1, 2, 0, 1], [2283, 2, 2283, 3], [2773, 2, 2773, 3], [1, 1, 4563, 0], [1305, 2, 1305, 3], [4563, 2, 4562, 3]]
 
GL(2,Integers(4564)).subgroup(gens)
 
Gens := [[1, 0, 2, 1], [1, 2, 0, 1], [2283, 2, 2283, 3], [2773, 2, 2773, 3], [1, 1, 4563, 0], [1305, 2, 1305, 3], [4563, 2, 4562, 3]];
 
sub<GL(2,Integers(4564))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 4564=227163 4564 = 2^{2} \cdot 7 \cdot 163 , index 22, genus 00, and generators

(1021),(1201),(2283222833),(2773227733),(1145630),(1305213053),(4563245623)\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2283 & 2 \\ 2283 & 3 \end{array}\right),\left(\begin{array}{rr} 2773 & 2 \\ 2773 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 4563 & 0 \end{array}\right),\left(\begin{array}{rr} 1305 & 2 \\ 1305 & 3 \end{array}\right),\left(\begin{array}{rr} 4563 & 2 \\ 4562 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[4564])K:=\Q(E[4564]) is a degree-6788803630694467888036306944 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/4564Z)\GL_2(\Z/4564\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
55 good 22 163 163
77 split multiplicative 88 163 163
163163 nonsplit multiplicative 164164 7 7

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 1141a consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.4564.1 Z/2Z\Z/2\Z not in database
66 6.0.95068558144.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 163
Reduction type ord ord ord split ord ord ord ord ord ord ord ord ord ord ord nonsplit
λ\lambda-invariant(s) 3 2 8 3 2 2 2 4 2 2 2 2 2 2 2 2
μ\mu-invariant(s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.