y 2 + x y = x 3 − x 2 − 5626971 x − 5136175940 y^2+xy=x^3-x^2-5626971x-5136175940 y 2 + x y = x 3 − x 2 − 5 6 2 6 9 7 1 x − 5 1 3 6 1 7 5 9 4 0
(homogenize , simplify )
y 2 z + x y z = x 3 − x 2 z − 5626971 x z 2 − 5136175940 z 3 y^2z+xyz=x^3-x^2z-5626971xz^2-5136175940z^3 y 2 z + x y z = x 3 − x 2 z − 5 6 2 6 9 7 1 x z 2 − 5 1 3 6 1 7 5 9 4 0 z 3
(dehomogenize , simplify )
y 2 = x 3 − 90031539 x − 328805291698 y^2=x^3-90031539x-328805291698 y 2 = x 3 − 9 0 0 3 1 5 3 9 x − 3 2 8 8 0 5 2 9 1 6 9 8
(homogenize , minimize )
sage: E = EllipticCurve([1, -1, 0, -5626971, -5136175940])
gp: E = ellinit([1, -1, 0, -5626971, -5136175940])
magma: E := EllipticCurve([1, -1, 0, -5626971, -5136175940]);
oscar: E = elliptic_curve([1, -1, 0, -5626971, -5136175940])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z / 2 Z \Z/{2}\Z Z / 2 Z
magma: MordellWeilGroup(E);
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
117117 117117 1 1 7 1 1 7 = 3 2 ⋅ 7 ⋅ 11 ⋅ 1 3 2 3^{2} \cdot 7 \cdot 11 \cdot 13^{2} 3 2 ⋅ 7 ⋅ 1 1 ⋅ 1 3 2
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
69645696506639253 69645696506639253 6 9 6 4 5 6 9 6 5 0 6 6 3 9 2 5 3 = 3 8 ⋅ 7 ⋅ 11 ⋅ 1 3 10 3^{8} \cdot 7 \cdot 11 \cdot 13^{10} 3 8 ⋅ 7 ⋅ 1 1 ⋅ 1 3 1 0
sage: E.discriminant().factor()
j-invariant :
j j j
=
5599640476399033 19792773 \frac{5599640476399033}{19792773} 1 9 7 9 2 7 7 3 5 5 9 9 6 4 0 4 7 6 3 9 9 0 3 3 = 3 − 2 ⋅ 7 − 1 ⋅ 1 1 − 1 ⋅ 1 3 − 4 ⋅ 23 9 3 ⋅ 74 3 3 3^{-2} \cdot 7^{-1} \cdot 11^{-1} \cdot 13^{-4} \cdot 239^{3} \cdot 743^{3} 3 − 2 ⋅ 7 − 1 ⋅ 1 1 − 1 ⋅ 1 3 − 4 ⋅ 2 3 9 3 ⋅ 7 4 3 3
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 2.4504347705189894258667912554 2.4504347705189894258667912554 2 . 4 5 0 4 3 4 7 7 0 5 1 8 9 8 9 4 2 5 8 6 6 7 9 1 2 5 5 4
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 0.61865394745416621214242491616 0.61865394745416621214242491616 0 . 6 1 8 6 5 3 9 4 7 4 5 4 1 6 6 2 1 2 1 4 2 4 2 4 9 1 6 1 6
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.931730731456961 0.931730731456961 0 . 9 3 1 7 3 0 7 3 1 4 5 6 9 6 1
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 4.9904210790265555 4.9904210790265555 4 . 9 9 0 4 2 1 0 7 9 0 2 6 5 5 5 5
Analytic rank :
r a n r_{\mathrm{an}} r a n = 0 0 0
Mordell-Weil rank :
r r r = 0 0 0
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) = 1 1 1
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 0.098023673497955899012598412067 0.098023673497955899012598412067 0 . 0 9 8 0 2 3 6 7 3 4 9 7 9 5 5 8 9 9 0 1 2 5 9 8 4 1 2 0 6 7
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 8 8 8
= 2 ⋅ 1 ⋅ 1 ⋅ 2 2 2\cdot1\cdot1\cdot2^{2} 2 ⋅ 1 ⋅ 1 ⋅ 2 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ( E , 1 ) L(E,1) L ( E , 1 ) ≈ 3.1367575519345887684031491862 3.1367575519345887684031491862 3 . 1 3 6 7 5 7 5 5 1 9 3 4 5 8 8 7 6 8 4 0 3 1 4 9 1 8 6 2
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
=
16 16 1 6 = 4 2 4^2 4 2
(exact )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
3.136757552 ≈ L ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 16 ⋅ 0.098024 ⋅ 1.000000 ⋅ 8 2 2 ≈ 3.136757552 \displaystyle 3.136757552 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{16 \cdot 0.098024 \cdot 1.000000 \cdot 8}{2^2} \approx 3.136757552 3 . 1 3 6 7 5 7 5 5 2 ≈ L ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 6 ⋅ 0 . 0 9 8 0 2 4 ⋅ 1 . 0 0 0 0 0 0 ⋅ 8 ≈ 3 . 1 3 6 7 5 7 5 5 2
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
117117.2.a.bs
q + q 2 − q 4 + 2 q 5 + q 7 − 3 q 8 + 2 q 10 + q 11 + q 14 − q 16 − 6 q 17 + 4 q 19 + O ( q 20 ) q + q^{2} - q^{4} + 2 q^{5} + q^{7} - 3 q^{8} + 2 q^{10} + q^{11} + q^{14} - q^{16} - 6 q^{17} + 4 q^{19} + O(q^{20}) q + q 2 − q 4 + 2 q 5 + q 7 − 3 q 8 + 2 q 1 0 + q 1 1 + q 1 4 − q 1 6 − 6 q 1 7 + 4 q 1 9 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 4 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[17476, 16017, 12399, 8014], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [7, 6, 24018, 24019], [15019, 7008, 11034, 23029], [19456, 3, 1149, 16018], [11087, 16008, 4308, 15983], [15019, 15018, 13026, 9019], [24017, 8, 24016, 9], [16015, 0, 0, 24023]]
GL(2,Integers(24024)).subgroup(gens)
Gens := [[17476, 16017, 12399, 8014], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [7, 6, 24018, 24019], [15019, 7008, 11034, 23029], [19456, 3, 1149, 16018], [11087, 16008, 4308, 15983], [15019, 15018, 13026, 9019], [24017, 8, 24016, 9], [16015, 0, 0, 24023]];
sub<GL(2,Integers(24024))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 24024 = 2 3 ⋅ 3 ⋅ 7 ⋅ 11 ⋅ 13 24024 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \cdot 13 2 4 0 2 4 = 2 3 ⋅ 3 ⋅ 7 ⋅ 1 1 ⋅ 1 3 , index 48 48 4 8 , genus 0 0 0 , and generators
( 17476 16017 12399 8014 ) , ( 1 0 8 1 ) , ( 1 8 0 1 ) , ( 1 4 4 17 ) , ( 7 6 24018 24019 ) , ( 15019 7008 11034 23029 ) , ( 19456 3 1149 16018 ) , ( 11087 16008 4308 15983 ) , ( 15019 15018 13026 9019 ) , ( 24017 8 24016 9 ) , ( 16015 0 0 24023 ) \left(\begin{array}{rr}
17476 & 16017 \\
12399 & 8014
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
8 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 8 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
4 & 17
\end{array}\right),\left(\begin{array}{rr}
7 & 6 \\
24018 & 24019
\end{array}\right),\left(\begin{array}{rr}
15019 & 7008 \\
11034 & 23029
\end{array}\right),\left(\begin{array}{rr}
19456 & 3 \\
1149 & 16018
\end{array}\right),\left(\begin{array}{rr}
11087 & 16008 \\
4308 & 15983
\end{array}\right),\left(\begin{array}{rr}
15019 & 15018 \\
13026 & 9019
\end{array}\right),\left(\begin{array}{rr}
24017 & 8 \\
24016 & 9
\end{array}\right),\left(\begin{array}{rr}
16015 & 0 \\
0 & 24023
\end{array}\right) ( 1 7 4 7 6 1 2 3 9 9 1 6 0 1 7 8 0 1 4 ) , ( 1 8 0 1 ) , ( 1 0 8 1 ) , ( 1 4 4 1 7 ) , ( 7 2 4 0 1 8 6 2 4 0 1 9 ) , ( 1 5 0 1 9 1 1 0 3 4 7 0 0 8 2 3 0 2 9 ) , ( 1 9 4 5 6 1 1 4 9 3 1 6 0 1 8 ) , ( 1 1 0 8 7 4 3 0 8 1 6 0 0 8 1 5 9 8 3 ) , ( 1 5 0 1 9 1 3 0 2 6 1 5 0 1 8 9 0 1 9 ) , ( 2 4 0 1 7 2 4 0 1 6 8 9 ) , ( 1 6 0 1 5 0 0 2 4 0 2 3 ) .
The torsion field K : = Q ( E [ 24024 ] ) K:=\Q(E[24024]) K : = Q ( E [ 2 4 0 2 4 ] ) is a degree-1071246842265600 1071246842265600 1 0 7 1 2 4 6 8 4 2 2 6 5 6 0 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 24024 Z ) \GL_2(\Z/24024\Z) GL 2 ( Z / 2 4 0 2 4 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
3 3 3
additive
8 8 8
13013 = 7 ⋅ 11 ⋅ 1 3 2 13013 = 7 \cdot 11 \cdot 13^{2} 1 3 0 1 3 = 7 ⋅ 1 1 ⋅ 1 3 2
7 7 7
split multiplicative
8 8 8
16731 = 3 2 ⋅ 11 ⋅ 1 3 2 16731 = 3^{2} \cdot 11 \cdot 13^{2} 1 6 7 3 1 = 3 2 ⋅ 1 1 ⋅ 1 3 2
11 11 1 1
split multiplicative
12 12 1 2
10647 = 3 2 ⋅ 7 ⋅ 1 3 2 10647 = 3^{2} \cdot 7 \cdot 13^{2} 1 0 6 4 7 = 3 2 ⋅ 7 ⋅ 1 3 2
13 13 1 3
additive
98 98 9 8
693 = 3 2 ⋅ 7 ⋅ 11 693 = 3^{2} \cdot 7 \cdot 11 6 9 3 = 3 2 ⋅ 7 ⋅ 1 1
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2 and 4.
Its isogeny class 117117.bs
consists of 4 curves linked by isogenies of
degrees dividing 4.
The minimal quadratic twist of this elliptic curve is
3003.h1 , its twist by − 39 -39 − 3 9 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 77 ) \Q(\sqrt{77}) Q ( 7 7 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
2 2 2
Q ( − 429 ) \Q(\sqrt{-429}) Q ( − 4 2 9 )
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
2 2 2
Q ( − 273 ) \Q(\sqrt{-273}) Q ( − 2 7 3 )
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
4 4 4
Q ( 77 , − 273 ) \Q(\sqrt{77}, \sqrt{-273}) Q ( 7 7 , − 2 7 3 )
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
8 8 8
deg 8
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
8 8 8
deg 8
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 4 Z ⊕ Z / 4 Z \Z/4\Z \oplus \Z/4\Z Z / 4 Z ⊕ Z / 4 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z \oplus \Z/8\Z Z / 2 Z ⊕ Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z \oplus \Z/8\Z Z / 2 Z ⊕ Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 12 Z \Z/12\Z Z / 1 2 Z
not in database
16 16 1 6
deg 16
Z / 12 Z \Z/12\Z Z / 1 2 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
All Iwasawa λ \lambda λ and μ \mu μ -invariants for primes p ≥ 3 p\ge
3 p ≥ 3 of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
All p p p -adic regulators are identically 1 1 1 since the rank is 0 0 0 .