Properties

Label 117600.ex
Number of curves $4$
Conductor $117600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ex1")
 
E.isogeny_class()
 

Elliptic curves in class 117600.ex

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
117600.ex1 117600hd4 \([0, 1, 0, -80331008, 277083662988]\) \(60910917333827912/3255076125\) \(3063651608241000000000\) \([2]\) \(10616832\) \(3.1902\)  
117600.ex2 117600hd3 \([0, 1, 0, -25971633, -47508415137]\) \(257307998572864/19456203375\) \(146496183735384000000000\) \([2]\) \(10616832\) \(3.1902\)  
117600.ex3 117600hd1 \([0, 1, 0, -5299758, 3819850488]\) \(139927692143296/27348890625\) \(3217569633140625000000\) \([2, 2]\) \(5308416\) \(2.8437\) \(\Gamma_0(N)\)-optimal
117600.ex4 117600hd2 \([0, 1, 0, 10906992, 22619680488]\) \(152461584507448/322998046875\) \(-304003177734375000000000\) \([2]\) \(10616832\) \(3.1902\)  

Rank

sage: E.rank()
 

The elliptic curves in class 117600.ex have rank \(0\).

Complex multiplication

The elliptic curves in class 117600.ex do not have complex multiplication.

Modular form 117600.2.a.ex

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{9} - 4 q^{11} + 2 q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.