E = EllipticCurve("ex1")
E.isogeny_class()
Elliptic curves in class 117600.ex
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
117600.ex1 |
117600hd4 |
[0,1,0,−80331008,277083662988] |
60910917333827912/3255076125 |
3063651608241000000000 |
[2] |
10616832 |
3.1902
|
|
117600.ex2 |
117600hd3 |
[0,1,0,−25971633,−47508415137] |
257307998572864/19456203375 |
146496183735384000000000 |
[2] |
10616832 |
3.1902
|
|
117600.ex3 |
117600hd1 |
[0,1,0,−5299758,3819850488] |
139927692143296/27348890625 |
3217569633140625000000 |
[2,2] |
5308416 |
2.8437
|
Γ0(N)-optimal |
117600.ex4 |
117600hd2 |
[0,1,0,10906992,22619680488] |
152461584507448/322998046875 |
−304003177734375000000000 |
[2] |
10616832 |
3.1902
|
|
The elliptic curves in class 117600.ex have
rank 0.
The elliptic curves in class 117600.ex do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.