Properties

Label 118800.iu
Number of curves $2$
Conductor $118800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("iu1")
 
E.isogeny_class()
 

Elliptic curves in class 118800.iu

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
118800.iu1 118800fq2 \([0, 0, 0, -16725, -832525]\) \(212919686400/11\) \(26730000\) \([]\) \(124416\) \(0.89758\)  
118800.iu2 118800fq1 \([0, 0, 0, -225, -925]\) \(4665600/1331\) \(359370000\) \([]\) \(41472\) \(0.34827\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 118800.iu have rank \(0\).

Complex multiplication

The elliptic curves in class 118800.iu do not have complex multiplication.

Modular form 118800.2.a.iu

sage: E.q_eigenform(10)
 
\(q + 4 q^{7} + q^{11} + 2 q^{13} + 3 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.