sage:E = EllipticCurve("by1")
E.isogeny_class()
Elliptic curves in class 119700.by
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
119700.by1 |
119700bk2 |
[0,0,0,−330375,51250750] |
1367595682000/402300927 |
1173109503132000000 |
[2] |
1990656 |
2.1730
|
|
119700.by2 |
119700bk1 |
[0,0,0,55500,5331625] |
103737344000/127413867 |
−23221177260750000 |
[2] |
995328 |
1.8264
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 119700.by have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1 |
7 | 1−T |
19 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1−2T+11T2 |
1.11.ac
|
13 |
1+6T+13T2 |
1.13.g
|
17 |
1+8T+17T2 |
1.17.i
|
23 |
1+2T+23T2 |
1.23.c
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 119700.by do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.