Properties

Label 119700.by
Number of curves $2$
Conductor $119700$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("by1")
 
E.isogeny_class()
 

Elliptic curves in class 119700.by

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
119700.by1 119700bk2 \([0, 0, 0, -330375, 51250750]\) \(1367595682000/402300927\) \(1173109503132000000\) \([2]\) \(1990656\) \(2.1730\)  
119700.by2 119700bk1 \([0, 0, 0, 55500, 5331625]\) \(103737344000/127413867\) \(-23221177260750000\) \([2]\) \(995328\) \(1.8264\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 119700.by have rank \(1\).

Complex multiplication

The elliptic curves in class 119700.by do not have complex multiplication.

Modular form 119700.2.a.by

sage: E.q_eigenform(10)
 
\(q + q^{7} + 2 q^{11} - 6 q^{13} - 8 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.