Properties

Label 119700.by
Number of curves 22
Conductor 119700119700
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("by1") E.isogeny_class()
 

Elliptic curves in class 119700.by

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
119700.by1 119700bk2 [0,0,0,330375,51250750][0, 0, 0, -330375, 51250750] 1367595682000/4023009271367595682000/402300927 11731095031320000001173109503132000000 [2][2] 19906561990656 2.17302.1730  
119700.by2 119700bk1 [0,0,0,55500,5331625][0, 0, 0, 55500, 5331625] 103737344000/127413867103737344000/127413867 23221177260750000-23221177260750000 [2][2] 995328995328 1.82641.8264 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 119700.by have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
5511
771T1 - T
19191T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
1111 12T+11T2 1 - 2 T + 11 T^{2} 1.11.ac
1313 1+6T+13T2 1 + 6 T + 13 T^{2} 1.13.g
1717 1+8T+17T2 1 + 8 T + 17 T^{2} 1.17.i
2323 1+2T+23T2 1 + 2 T + 23 T^{2} 1.23.c
2929 1+6T+29T2 1 + 6 T + 29 T^{2} 1.29.g
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 119700.by do not have complex multiplication.

Modular form 119700.2.a.by

Copy content sage:E.q_eigenform(10)
 
q+q7+2q116q138q17+q19+O(q20)q + q^{7} + 2 q^{11} - 6 q^{13} - 8 q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.