Show commands:
SageMath
E = EllipticCurve("by1")
E.isogeny_class()
Elliptic curves in class 119700.by
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
119700.by1 | 119700bk2 | \([0, 0, 0, -330375, 51250750]\) | \(1367595682000/402300927\) | \(1173109503132000000\) | \([2]\) | \(1990656\) | \(2.1730\) | |
119700.by2 | 119700bk1 | \([0, 0, 0, 55500, 5331625]\) | \(103737344000/127413867\) | \(-23221177260750000\) | \([2]\) | \(995328\) | \(1.8264\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 119700.by have rank \(1\).
Complex multiplication
The elliptic curves in class 119700.by do not have complex multiplication.Modular form 119700.2.a.by
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.