Show commands:
SageMath
E = EllipticCurve("r1")
E.isogeny_class()
Elliptic curves in class 1200.r
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1200.r1 | 1200g4 | \([0, 1, 0, -5408, 151188]\) | \(546718898/405\) | \(12960000000\) | \([4]\) | \(1536\) | \(0.87412\) | |
1200.r2 | 1200g3 | \([0, 1, 0, -3408, -76812]\) | \(136835858/1875\) | \(60000000000\) | \([2]\) | \(1536\) | \(0.87412\) | |
1200.r3 | 1200g2 | \([0, 1, 0, -408, 1188]\) | \(470596/225\) | \(3600000000\) | \([2, 2]\) | \(768\) | \(0.52755\) | |
1200.r4 | 1200g1 | \([0, 1, 0, 92, 188]\) | \(21296/15\) | \(-60000000\) | \([2]\) | \(384\) | \(0.18097\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 1200.r have rank \(0\).
Complex multiplication
The elliptic curves in class 1200.r do not have complex multiplication.Modular form 1200.2.a.r
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.