Properties

Label 120b
Number of curves 44
Conductor 120120
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 120b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
120.a4 120b1 [0,1,0,4,0][0, 1, 0, 4, 0] 21296/1521296/15 3840-3840 [2][2] 88 0.62374-0.62374 Γ0(N)\Gamma_0(N)-optimal
120.a3 120b2 [0,1,0,16,16][0, 1, 0, -16, -16] 470596/225470596/225 230400230400 [2,2][2, 2] 1616 0.27717-0.27717  
120.a1 120b3 [0,1,0,216,1296][0, 1, 0, -216, -1296] 546718898/405546718898/405 829440829440 [2][2] 3232 0.0694030.069403  
120.a2 120b4 [0,1,0,136,560][0, 1, 0, -136, 560] 136835858/1875136835858/1875 38400003840000 [2][2] 3232 0.0694030.069403  

Rank

sage: E.rank()
 

The elliptic curves in class 120b have rank 00.

Complex multiplication

The elliptic curves in class 120b do not have complex multiplication.

Modular form 120.2.a.b

sage: E.q_eigenform(10)
 
q+q3q5+4q7+q96q13q152q17+4q19+O(q20)q + q^{3} - q^{5} + 4 q^{7} + q^{9} - 6 q^{13} - q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.