Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 120b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
120.a4 | 120b1 | -optimal | ||||||
120.a3 | 120b2 | |||||||
120.a1 | 120b3 | |||||||
120.a2 | 120b4 |
Rank
sage: E.rank()
The elliptic curves in class 120b have rank .
Complex multiplication
The elliptic curves in class 120b do not have complex multiplication.Modular form 120.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The entry is the smallest degree of a cyclic isogeny between the -th and -th curve in the isogeny class, in the Cremona numbering.
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.