Properties

Label 121.a
Number of curves 22
Conductor 121121
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 121.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
121.a1 121a2 [1,1,1,305,7888][1, 1, 1, -305, 7888] 121-121 25937424601-25937424601 [][] 6666 0.680990.68099  
121.a2 121a1 [1,1,1,30,76][1, 1, 1, -30, -76] 24729001-24729001 121-121 [][] 66 0.51796-0.51796 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 121.a have rank 00.

Complex multiplication

The elliptic curves in class 121.a do not have complex multiplication.

Modular form 121.2.a.a

sage: E.q_eigenform(10)
 
qq2+2q3q4+q52q6+2q7+3q8+q9q102q12q132q14+2q15q16+5q17q186q19+O(q20)q - q^{2} + 2 q^{3} - q^{4} + q^{5} - 2 q^{6} + 2 q^{7} + 3 q^{8} + q^{9} - q^{10} - 2 q^{12} - q^{13} - 2 q^{14} + 2 q^{15} - q^{16} + 5 q^{17} - q^{18} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(111111)\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.