Properties

Label 121.a1
Conductor 121121
Discriminant 25937424601-25937424601
j-invariant 121 -121
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3+x2305x+7888y^2+xy+y=x^3+x^2-305x+7888 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3+x2z305xz2+7888z3y^2z+xyz+yz^2=x^3+x^2z-305xz^2+7888z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3395307x+373960422y^2=x^3-395307x+373960422 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 1, -305, 7888])
 
gp: E = ellinit([1, 1, 1, -305, 7888])
 
magma: E := EllipticCurve([1, 1, 1, -305, 7888]);
 
oscar: E = elliptic_curve([1, 1, 1, -305, 7888])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  121 121  = 11211^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  25937424601-25937424601 = 11110-1 \cdot 11^{10}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  121 -121  = 1112-1 \cdot 11^{2}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.680986798283506182646032331130.68098679828350618264603233113
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.3172592623818026040722539838-1.3172592623818026040722539838
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.94611213083372430.9461121308337243
Szpiro ratio: σm\sigma_{m} ≈ 6.56854227887283856.5685422788728385

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.01979486178291655683711727841.0197948617829165568371172784
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 1 1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.01979486178291655683711727841.0197948617829165568371172784
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.019794862L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.0197951.0000001121.019794862\displaystyle 1.019794862 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.019795 \cdot 1.000000 \cdot 1}{1^2} \approx 1.019794862

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   121.2.a.a

qq2+2q3q4+q52q6+2q7+3q8+q9q102q12q132q14+2q15q16+5q17q186q19+O(q20) q - q^{2} + 2 q^{3} - q^{4} + q^{5} - 2 q^{6} + 2 q^{7} + 3 q^{8} + q^{9} - q^{10} - 2 q^{12} - q^{13} - 2 q^{14} + 2 q^{15} - q^{16} + 5 q^{17} - q^{18} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 66
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There is only one prime pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
1111 11 IIII^{*} additive -1 2 10 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2G 4.2.0.1
1111 11B.1.4 11.120.1.4

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 84, 0, 1], [15, 0, 0, 39], [45, 44, 44, 45], [45, 33, 0, 67], [1, 0, 44, 1], [45, 22, 22, 1], [12, 55, 77, 23], [1, 44, 0, 1], [45, 44, 66, 1]]
 
GL(2,Integers(88)).subgroup(gens)
 
Gens := [[1, 84, 0, 1], [15, 0, 0, 39], [45, 44, 44, 45], [45, 33, 0, 67], [1, 0, 44, 1], [45, 22, 22, 1], [12, 55, 77, 23], [1, 44, 0, 1], [45, 44, 66, 1]];
 
sub<GL(2,Integers(88))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 88=2311 88 = 2^{3} \cdot 11 , index 480480, genus 1616, and generators

(18401),(150039),(45444445),(4533067),(10441),(4522221),(12557723),(14401),(4544661)\left(\begin{array}{rr} 1 & 84 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 0 \\ 0 & 39 \end{array}\right),\left(\begin{array}{rr} 45 & 44 \\ 44 & 45 \end{array}\right),\left(\begin{array}{rr} 45 & 33 \\ 0 & 67 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 44 & 1 \end{array}\right),\left(\begin{array}{rr} 45 & 22 \\ 22 & 1 \end{array}\right),\left(\begin{array}{rr} 12 & 55 \\ 77 & 23 \end{array}\right),\left(\begin{array}{rr} 1 & 44 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 45 & 44 \\ 66 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[88])K:=\Q(E[88]) is a degree-4224042240 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/88Z)\GL_2(\Z/88\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
1111 additive 3232 1 1

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 11.
Its isogeny class 121.a consists of 2 curves linked by isogenies of degree 11.

Twists

The minimal quadratic twist of this elliptic curve is 121.c2, its twist by 11-11.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.484.1 Z/2Z\Z/2\Z not in database
55 Q(ζ11)+\Q(\zeta_{11})^+ Z/11Z\Z/11\Z 5.5.14641.1-121.1-d2
66 6.0.937024.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.3874403907.1 Z/3Z\Z/3\Z not in database
1212 12.2.6799340234604544.1 Z/4Z\Z/4\Z not in database
1515 15.5.388863829589238784.1 Z/22Z\Z/22\Z not in database

We only show fields where the torsion growth is primitive.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ord ord ord ord add ord ord ord ord ord ord ord ord ss ord
λ\lambda-invariant(s) ? 0 6 0 - 0 0 0 0 0 0 0 0 0,0 0
μ\mu-invariant(s) ? 0 0 0 - 0 0 0 0 0 0 0 0 0,0 0

An entry ? indicates that the invariants have not yet been computed.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.