Properties

Label 1216.e
Number of curves 33
Conductor 12161216
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 1216.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1216.e1 1216b3 [0,1,0,5473,1251871][0, -1, 0, -5473, -1251871] 69173457625/2550136832-69173457625/2550136832 668503069687808-668503069687808 [][] 34563456 1.52491.5249  
1216.e2 1216b1 [0,1,0,993,12385][0, -1, 0, -993, 12385] 413493625/152-413493625/152 39845888-39845888 [][] 384384 0.426280.42628 Γ0(N)\Gamma_0(N)-optimal
1216.e3 1216b2 [0,1,0,607,45601][0, -1, 0, 607, 45601] 94196375/351180894196375/3511808 920599396352-920599396352 [][] 11521152 0.975580.97558  

Rank

sage: E.rank()
 

The elliptic curves in class 1216.e have rank 11.

Complex multiplication

The elliptic curves in class 1216.e do not have complex multiplication.

Modular form 1216.2.a.e

sage: E.q_eigenform(10)
 
qq3q72q9+6q115q13+3q17q19+O(q20)q - q^{3} - q^{7} - 2 q^{9} + 6 q^{11} - 5 q^{13} + 3 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(193913331)\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.