Properties

Label 121968gl2
Conductor 121968121968
Discriminant 8.283×1020-8.283\times 10^{20}
j-invariant 13278380032156590819 -\frac{13278380032}{156590819}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3859584x1418292304y^2=x^3-859584x-1418292304 Copy content Toggle raw display (homogenize, simplify)
y2z=x3859584xz21418292304z3y^2z=x^3-859584xz^2-1418292304z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3859584x1418292304y^2=x^3-859584x-1418292304 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -859584, -1418292304])
 
gp: E = ellinit([0, 0, 0, -859584, -1418292304])
 
magma: E := EllipticCurve([0, 0, 0, -859584, -1418292304]);
 
oscar: E = elliptic_curve([0, 0, 0, -859584, -1418292304])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(7601/4,493801/8)(7601/4, 493801/8)3.47171393741120849728582387143.4717139374112084972858238714\infty

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  121968 121968  = 243271122^{4} \cdot 3^{2} \cdot 7 \cdot 11^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  828342382501792198656-828342382501792198656 = 12123676119-1 \cdot 2^{12} \cdot 3^{6} \cdot 7^{6} \cdot 11^{9}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  13278380032156590819 -\frac{13278380032}{156590819}  = 121876113373-1 \cdot 2^{18} \cdot 7^{-6} \cdot 11^{-3} \cdot 37^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.69570743624183613636836809422.6957074362418361363683680942
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.254306474948650709222541565300.25430647494865070922254156530
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.06521683961209131.0652168396120913
Szpiro ratio: σm\sigma_{m} ≈ 4.7533209053172194.753320905317219

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 3.47171393741120849728582387143.4717139374112084972858238714
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0675816872872150608042636370110.067581687287215060804263637011
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 24 24  = 11(23)22 1\cdot1\cdot( 2 \cdot 3 )\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 5.63098285605096990201313607045.6309828560509699020131360704
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

5.630982856L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.0675823.47171424125.630982856\displaystyle 5.630982856 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.067582 \cdot 3.471714 \cdot 24}{1^2} \approx 5.630982856

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 121968.2.a.s

q3q5+q7+4q136q17+2q19+O(q20) q - 3 q^{5} + q^{7} + 4 q^{13} - 6 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 5184000
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 IIII^{*} additive -1 4 12 0
33 11 I0I_0^{*} additive -1 2 6 0
77 66 I6I_{6} split multiplicative -1 1 6 6
1111 44 I3I_{3}^{*} additive -1 2 9 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3Cs 3.12.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[262, 9, 873, 1378], [1, 18, 0, 1], [1403, 2754, 1404, 2753], [1, 9, 9, 82], [1, 18, 0, 155], [1, 6, 6, 37], [1385, 0, 0, 2771], [1, 0, 18, 1], [1, 12, 0, 1], [7, 18, 1170, 463], [2755, 18, 2754, 19]]
 
GL(2,Integers(2772)).subgroup(gens)
 
Gens := [[262, 9, 873, 1378], [1, 18, 0, 1], [1403, 2754, 1404, 2753], [1, 9, 9, 82], [1, 18, 0, 155], [1, 6, 6, 37], [1385, 0, 0, 2771], [1, 0, 18, 1], [1, 12, 0, 1], [7, 18, 1170, 463], [2755, 18, 2754, 19]];
 
sub<GL(2,Integers(2772))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 2772=2232711 2772 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 11 , index 144144, genus 33, and generators

(26298731378),(11801),(1403275414042753),(19982),(1180155),(16637),(1385002771),(10181),(11201),(7181170463),(275518275419)\left(\begin{array}{rr} 262 & 9 \\ 873 & 1378 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1403 & 2754 \\ 1404 & 2753 \end{array}\right),\left(\begin{array}{rr} 1 & 9 \\ 9 & 82 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 0 & 155 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1385 & 0 \\ 0 & 2771 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 18 \\ 1170 & 463 \end{array}\right),\left(\begin{array}{rr} 2755 & 18 \\ 2754 & 19 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[2772])K:=\Q(E[2772]) is a degree-6897623040068976230400 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/2772Z)\GL_2(\Z/2772\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 1089=32112 1089 = 3^{2} \cdot 11^{2}
33 additive 22 1936=24112 1936 = 2^{4} \cdot 11^{2}
77 split multiplicative 88 17424=2432112 17424 = 2^{4} \cdot 3^{2} \cdot 11^{2}
1111 additive 7272 1008=24327 1008 = 2^{4} \cdot 3^{2} \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 121968gl consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

The minimal quadratic twist of this elliptic curve is 77b1, its twist by 132-132.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(11)\Q(\sqrt{11}) Z/3Z\Z/3\Z not in database
22 Q(33)\Q(\sqrt{-33}) Z/3Z\Z/3\Z not in database
33 3.1.44.1 Z/2Z\Z/2\Z not in database
44 Q(3,11)\Q(\sqrt{-3}, \sqrt{11}) Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
66 6.0.21296.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.2.340736.1 Z/6Z\Z/6\Z not in database
66 6.0.9199872.1 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 12.0.84637644816384.3 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1212 12.0.116101021696.1 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1212 12.0.84637644816384.4 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.6.38526477428681057548961701054370699274878976.1 Z/9Z\Z/9\Z not in database
1818 18.0.89494617799570972283932117532147712.5 Z/9Z\Z/9\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add ord split add ord ord ord ord ord ord ord ord ord ss
λ\lambda-invariant(s) - - 1 2 - 1 3 3 1 1 1 1 1 1 1,1
μ\mu-invariant(s) - - 0 0 - 0 0 0 0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.