Properties

Label 12200.n
Number of curves $1$
Conductor $12200$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 12200.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
12200.n1 12200f1 \([0, -1, 0, 632, -10068]\) \(108879878/226981\) \(-58107136000\) \([]\) \(9792\) \(0.74980\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 12200.n1 has rank \(1\).

Complex multiplication

The elliptic curves in class 12200.n do not have complex multiplication.

Modular form 12200.2.a.n

sage: E.q_eigenform(10)
 
\(q + 2 q^{3} + 2 q^{7} + q^{9} + 2 q^{11} - 5 q^{13} - 3 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display