Properties

Label 122018.bh
Number of curves $1$
Conductor $122018$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bh1")
 
E.isogeny_class()
 

Elliptic curves in class 122018.bh

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
122018.bh1 122018x1 \([1, 1, 1, 120747, -6972997]\) \(309512375/212992\) \(-133979332345151488\) \([]\) \(1270080\) \(1.9750\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 122018.bh1 has rank \(0\).

Complex multiplication

The elliptic curves in class 122018.bh do not have complex multiplication.

Modular form 122018.2.a.bh

sage: E.q_eigenform(10)
 
\(q + q^{2} + 2 q^{3} + q^{4} + 2 q^{6} + q^{8} + q^{9} - 3 q^{11} + 2 q^{12} + q^{16} + 7 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display