Show commands:
SageMath
E = EllipticCurve("n1")
E.isogeny_class()
Elliptic curves in class 122018.n
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
122018.n1 | 122018b1 | \([1, -1, 0, -72448, -6176208]\) | \(86697/16\) | \(7761080704224016\) | \([]\) | \(919296\) | \(1.7673\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 122018.n1 has rank \(1\).
Complex multiplication
The elliptic curves in class 122018.n do not have complex multiplication.Modular form 122018.2.a.n
sage: E.q_eigenform(10)