Properties

Label 122018.n
Number of curves $1$
Conductor $122018$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 122018.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
122018.n1 122018b1 \([1, -1, 0, -72448, -6176208]\) \(86697/16\) \(7761080704224016\) \([]\) \(919296\) \(1.7673\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 122018.n1 has rank \(1\).

Complex multiplication

The elliptic curves in class 122018.n do not have complex multiplication.

Modular form 122018.2.a.n

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 3 q^{5} - 3 q^{7} - q^{8} - 3 q^{9} - 3 q^{10} + 3 q^{11} + 3 q^{14} + q^{16} - q^{17} + 3 q^{18} + O(q^{20})\) Copy content Toggle raw display