Properties

Label 122018.y
Number of curves 11
Conductor 122018122018
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("y1")
 
E.isogeny_class()
 

Elliptic curves in class 122018.y

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
122018.y1 122018u1 [1,1,1,12243744,13605860173][1, -1, 1, -12243744, -13605860173] 86697/1686697/16 3746125419287481844494437461254192874818444944 [][] 1195084811950848 3.04983.0498 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 122018.y1 has rank 00.

Complex multiplication

The elliptic curves in class 122018.y do not have complex multiplication.

Modular form 122018.2.a.y

sage: E.q_eigenform(10)
 
q+q2+q43q5+3q7+q83q93q103q11+3q14+q16q173q18+O(q20)q + q^{2} + q^{4} - 3 q^{5} + 3 q^{7} + q^{8} - 3 q^{9} - 3 q^{10} - 3 q^{11} + 3 q^{14} + q^{16} - q^{17} - 3 q^{18} + O(q^{20}) Copy content Toggle raw display