Show commands:
SageMath
E = EllipticCurve("y1")
E.isogeny_class()
Elliptic curves in class 122018.y
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
122018.y1 | 122018u1 | \([1, -1, 1, -12243744, -13605860173]\) | \(86697/16\) | \(37461254192874818444944\) | \([]\) | \(11950848\) | \(3.0498\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 122018.y1 has rank \(0\).
Complex multiplication
The elliptic curves in class 122018.y do not have complex multiplication.Modular form 122018.2.a.y
sage: E.q_eigenform(10)