Properties

Label 122018.y
Number of curves $1$
Conductor $122018$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("y1")
 
E.isogeny_class()
 

Elliptic curves in class 122018.y

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
122018.y1 122018u1 \([1, -1, 1, -12243744, -13605860173]\) \(86697/16\) \(37461254192874818444944\) \([]\) \(11950848\) \(3.0498\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 122018.y1 has rank \(0\).

Complex multiplication

The elliptic curves in class 122018.y do not have complex multiplication.

Modular form 122018.2.a.y

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 3 q^{5} + 3 q^{7} + q^{8} - 3 q^{9} - 3 q^{10} - 3 q^{11} + 3 q^{14} + q^{16} - q^{17} - 3 q^{18} + O(q^{20})\) Copy content Toggle raw display