Properties

Label 122018b1
Conductor 122018122018
Discriminant 7.761×10157.761\times 10^{15}
j-invariant 8669716 \frac{86697}{16}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x272448x6176208y^2+xy=x^3-x^2-72448x-6176208 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z72448xz26176208z3y^2z+xyz=x^3-x^2z-72448xz^2-6176208z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31159171x396436482y^2=x^3-1159171x-396436482 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, -72448, -6176208])
 
gp: E = ellinit([1, -1, 0, -72448, -6176208])
 
magma: E := EllipticCurve([1, -1, 0, -72448, -6176208]);
 
oscar: E = elliptic_curve([1, -1, 0, -72448, -6176208])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1532/9,31900/27)(-1532/9, 31900/27)2.99541108605040116605847157032.9954110860504011660584715703\infty

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  122018 122018  = 21321922 \cdot 13^{2} \cdot 19^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  77610807042240167761080704224016 = 241341982^{4} \cdot 13^{4} \cdot 19^{8}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  8669716 \frac{86697}{16}  = 2433132192^{-4} \cdot 3^{3} \cdot 13^{2} \cdot 19
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.76734007240514621561292452961.7673400724051462156129245296
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.0506023661929930030775895722-1.0506023661929930030775895722
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.10589977203492971.1058997720349297
Szpiro ratio: σm\sigma_{m} ≈ 3.8580752733078513.858075273307851

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 2.99541108605040116605847157032.9954110860504011660584715703
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.294705926833046900034068893880.29470592683304690003406889388
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 6 6  = 213 2\cdot1\cdot3
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 5.29659240216280246726027147105.2965924021628024672602714710
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

5.296592402L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2947062.9954116125.296592402\displaystyle 5.296592402 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.294706 \cdot 2.995411 \cdot 6}{1^2} \approx 5.296592402

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 122018.2.a.n

qq2+q4+3q53q7q83q93q10+3q11+3q14+q16q17+3q18+O(q20) q - q^{2} + q^{4} + 3 q^{5} - 3 q^{7} - q^{8} - 3 q^{9} - 3 q^{10} + 3 q^{11} + 3 q^{14} + q^{16} - q^{17} + 3 q^{18} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 919296
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I4I_{4} nonsplit multiplicative 1 1 4 4
1313 11 IVIV additive 1 2 4 0
1919 33 IVIV^{*} additive 1 2 8 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cn 4.4.0.2

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 4, 1], [1, 2, 2, 5], [1, 4, 0, 1], [840, 3, 753, 983], [985, 4, 984, 5], [497, 4, 502, 11], [207, 985, 207, 984], [3, 2, 980, 983]]
 
GL(2,Integers(988)).subgroup(gens)
 
Gens := [[1, 0, 4, 1], [1, 2, 2, 5], [1, 4, 0, 1], [840, 3, 753, 983], [985, 4, 984, 5], [497, 4, 502, 11], [207, 985, 207, 984], [3, 2, 980, 983]];
 
sub<GL(2,Integers(988))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 988=221319 988 = 2^{2} \cdot 13 \cdot 19 , index 1212, genus 00, and generators

(1041),(1225),(1401),(8403753983),(98549845),(497450211),(207985207984),(32980983)\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 840 & 3 \\ 753 & 983 \end{array}\right),\left(\begin{array}{rr} 985 & 4 \\ 984 & 5 \end{array}\right),\left(\begin{array}{rr} 497 & 4 \\ 502 & 11 \end{array}\right),\left(\begin{array}{rr} 207 & 985 \\ 207 & 984 \end{array}\right),\left(\begin{array}{rr} 3 & 2 \\ 980 & 983 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[988])K:=\Q(E[988]) is a degree-2581383168025813831680 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/988Z)\GL_2(\Z/988\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 61009=132192 61009 = 13^{2} \cdot 19^{2}
1313 additive 6262 722=2192 722 = 2 \cdot 19^{2}
1919 additive 146146 338=2132 338 = 2 \cdot 13^{2}

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 122018b consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 122018bd1, its twist by 19-19.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.3.61009.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.130243656050352.3 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit ss ord ord ord add ord add ord ord ord ord ord ord ord
λ\lambda-invariant(s) 2 3,3 1 3 1 - 1 - 1 1 1 1 1 1 1
μ\mu-invariant(s) 0 0,0 0 0 0 - 0 - 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.