Properties

Label 122018be
Number of curves 11
Conductor 122018122018
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("be1")
 
E.isogeny_class()
 

Elliptic curves in class 122018be

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
122018.be1 122018be1 [1,0,0,61071280,192774653696][1, 0, 0, -61071280, -192774653696] 110931033861649/6497214464-110931033861649/6497214464 1475397088211685157216256-1475397088211685157216256 [][] 1886976018869760 3.39363.3936 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 122018be1 has rank 11.

Complex multiplication

The elliptic curves in class 122018be do not have complex multiplication.

Modular form 122018.2.a.be

sage: E.q_eigenform(10)
 
q+q2+q3+q4+q5+q6+3q7+q82q9+q10+4q11+q12+3q14+q15+q163q172q18+O(q20)q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + 3 q^{7} + q^{8} - 2 q^{9} + q^{10} + 4 q^{11} + q^{12} + 3 q^{14} + q^{15} + q^{16} - 3 q^{17} - 2 q^{18} + O(q^{20}) Copy content Toggle raw display