Show commands:
SageMath
E = EllipticCurve("be1")
E.isogeny_class()
Elliptic curves in class 122018be
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
122018.be1 | 122018be1 | \([1, 0, 0, -61071280, -192774653696]\) | \(-110931033861649/6497214464\) | \(-1475397088211685157216256\) | \([]\) | \(18869760\) | \(3.3936\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 122018be1 has rank \(1\).
Complex multiplication
The elliptic curves in class 122018be do not have complex multiplication.Modular form 122018.2.a.be
sage: E.q_eigenform(10)