Properties

Label 122018bg
Number of curves $1$
Conductor $122018$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bg1")
 
E.isogeny_class()
 

Elliptic curves in class 122018bg

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
122018.v1 122018bg1 \([1, 0, 0, -2990712, 2115424336]\) \(-77086633/5776\) \(-221664225993342120976\) \([]\) \(8087040\) \(2.6525\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 122018bg1 has rank \(1\).

Complex multiplication

The elliptic curves in class 122018bg do not have complex multiplication.

Modular form 122018.2.a.bg

sage: E.q_eigenform(10)
 
\(q + q^{2} - 2 q^{3} + q^{4} - 3 q^{5} - 2 q^{6} + q^{8} + q^{9} - 3 q^{10} - 6 q^{11} - 2 q^{12} + 6 q^{15} + q^{16} + 7 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display