E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 122018f
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
122018.j4 |
122018f1 |
[1,−1,0,232597,−14656459] |
6128487/3952 |
−897426016167377008 |
[2] |
2056320 |
2.1338
|
Γ0(N)-optimal |
122018.j3 |
122018f2 |
[1,−1,0,−987583,−119835975] |
469097433/244036 |
55416056498335530244 |
[2,2] |
4112640 |
2.4804
|
|
122018.j2 |
122018f3 |
[1,−1,0,−8918753,10166891515] |
345505073913/3388346 |
769430630611504862234 |
[2] |
8225280 |
2.8269
|
|
122018.j1 |
122018f4 |
[1,−1,0,−12579293,−17152694649] |
969417177273/1085318 |
246455619689965910822 |
[2] |
8225280 |
2.8269
|
|
The elliptic curves in class 122018f have
rank 0.
The elliptic curves in class 122018f do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.