Properties

Label 122018f
Number of curves $4$
Conductor $122018$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 122018f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
122018.j4 122018f1 \([1, -1, 0, 232597, -14656459]\) \(6128487/3952\) \(-897426016167377008\) \([2]\) \(2056320\) \(2.1338\) \(\Gamma_0(N)\)-optimal
122018.j3 122018f2 \([1, -1, 0, -987583, -119835975]\) \(469097433/244036\) \(55416056498335530244\) \([2, 2]\) \(4112640\) \(2.4804\)  
122018.j2 122018f3 \([1, -1, 0, -8918753, 10166891515]\) \(345505073913/3388346\) \(769430630611504862234\) \([2]\) \(8225280\) \(2.8269\)  
122018.j1 122018f4 \([1, -1, 0, -12579293, -17152694649]\) \(969417177273/1085318\) \(246455619689965910822\) \([2]\) \(8225280\) \(2.8269\)  

Rank

sage: E.rank()
 

The elliptic curves in class 122018f have rank \(0\).

Complex multiplication

The elliptic curves in class 122018f do not have complex multiplication.

Modular form 122018.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{5} - 4 q^{7} - q^{8} - 3 q^{9} + 2 q^{10} - 4 q^{11} + 4 q^{14} + q^{16} + 2 q^{17} + 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.