Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-17449845x+28049357851\) | (homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-17449845xz^2+28049357851z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-22614999147x+1309010064891750\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(2449, 1986)$ | $0.31066824324895319313417241283$ | $\infty$ |
$(21703/9, -33244/27)$ | $2.5994545820609051374640298118$ | $\infty$ |
Integral points
\( \left(-3973, 188224\right) \), \( \left(-3973, -184252\right) \), \( \left(-401, 187236\right) \), \( \left(-401, -186836\right) \), \( \left(2111, 23956\right) \), \( \left(2111, -26068\right) \), \( \left(2335, 5292\right) \), \( \left(2335, -7628\right) \), \( \left(2393, 362\right) \), \( \left(2393, -2756\right) \), \( \left(2411, -1168\right) \), \( \left(2411, -1244\right) \), \( \left(2449, 1986\right) \), \( \left(2449, -4436\right) \), \( \left(2563, 11752\right) \), \( \left(2563, -14316\right) \), \( \left(15293, 1819412\right) \), \( \left(15293, -1834706\right) \)
Invariants
Conductor: | $N$ | = | \( 122018 \) | = | $2 \cdot 13^{2} \cdot 19^{2}$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $\Delta$ | = | $-13607275941304448$ | = | $-1 \cdot 2^{7} \cdot 13^{8} \cdot 19^{4} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | $j$ | = | \( -\frac{934165699635529}{21632} \) | = | $-1 \cdot 2^{-7} \cdot 13^{-2} \cdot 19^{2} \cdot 13729^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6184652199810780835210825262$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.35451088152816289549132966145$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $Q$ | ≈ | $1.1175495064733663$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.262852441479337$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Mordell-Weil rank: | $r$ | = | $ 2$ | comment: Rank
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.78670403190446818019893599846$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $\Omega$ | ≈ | $0.28789779497665233279255987373$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 42 $ = $ 7\cdot2\cdot3 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $9.5125949555506101035697370135 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
BSD formula
$\displaystyle 9.512594956 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.287898 \cdot 0.786704 \cdot 42}{1^2} \approx 9.512594956$
Modular invariants
Modular form 122018.2.a.w
For more coefficients, see the Downloads section to the right.
Modular degree: | 6773760 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
$13$ | $2$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
$19$ | $3$ | $IV$ | additive | 1 | 2 | 4 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2G | 8.2.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 8.2.0.a.1, level \( 8 = 2^{3} \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 5 & 2 \\ 5 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 2 \\ 6 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 7 & 0 \end{array}\right),\left(\begin{array}{rr} 7 & 2 \\ 7 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[8])$ is a degree-$768$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 61009 = 13^{2} \cdot 19^{2} \) |
$7$ | good | $2$ | \( 61009 = 13^{2} \cdot 19^{2} \) |
$13$ | additive | $98$ | \( 722 = 2 \cdot 19^{2} \) |
$19$ | additive | $128$ | \( 338 = 2 \cdot 13^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 122018w consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 9386a1, its twist by $13$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.2888.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.66724352.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | ord | ord | ord | ord | add | ord | add | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 6 | 6 | 2 | 6 | 2 | - | 2 | - | 2,2 | 2 | 2 | 4 | 2 | 2 | 2 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | - | 0 | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.