Properties

Label 122018w1
Conductor 122018122018
Discriminant 1.361×1016-1.361\times 10^{16}
j-invariant 93416569963552921632 -\frac{934165699635529}{21632}
CM no
Rank 22
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3+x217449845x+28049357851y^2+xy+y=x^3+x^2-17449845x+28049357851 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3+x2z17449845xz2+28049357851z3y^2z+xyz+yz^2=x^3+x^2z-17449845xz^2+28049357851z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x322614999147x+1309010064891750y^2=x^3-22614999147x+1309010064891750 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 1, -17449845, 28049357851])
 
gp: E = ellinit([1, 1, 1, -17449845, 28049357851])
 
magma: E := EllipticCurve([1, 1, 1, -17449845, 28049357851]);
 
oscar: E = elliptic_curve([1, 1, 1, -17449845, 28049357851])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ\Z \oplus \Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(2449,1986)(2449, 1986)0.310668243248953193134172412830.31066824324895319313417241283\infty
(21703/9,33244/27)(21703/9, -33244/27)2.59945458206090513746402981182.5994545820609051374640298118\infty

Integral points

(3973,188224) \left(-3973, 188224\right) , (3973,184252) \left(-3973, -184252\right) , (401,187236) \left(-401, 187236\right) , (401,186836) \left(-401, -186836\right) , (2111,23956) \left(2111, 23956\right) , (2111,26068) \left(2111, -26068\right) , (2335,5292) \left(2335, 5292\right) , (2335,7628) \left(2335, -7628\right) , (2393,362) \left(2393, 362\right) , (2393,2756) \left(2393, -2756\right) , (2411,1168) \left(2411, -1168\right) , (2411,1244) \left(2411, -1244\right) , (2449,1986) \left(2449, 1986\right) , (2449,4436) \left(2449, -4436\right) , (2563,11752) \left(2563, 11752\right) , (2563,14316) \left(2563, -14316\right) , (15293,1819412) \left(15293, 1819412\right) , (15293,1834706) \left(15293, -1834706\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  122018 122018  = 21321922 \cdot 13^{2} \cdot 19^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  13607275941304448-13607275941304448 = 127138194-1 \cdot 2^{7} \cdot 13^{8} \cdot 19^{4}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  93416569963552921632 -\frac{934165699635529}{21632}  = 127132192137293-1 \cdot 2^{-7} \cdot 13^{-2} \cdot 19^{2} \cdot 13729^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.61846521998107808352108252622.6184652199810780835210825262
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.354510881528162895491329661450.35451088152816289549132966145
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.11754950647336631.1175495064733663
Szpiro ratio: σm\sigma_{m} ≈ 5.2628524414793375.262852441479337

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 2 2
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 2 2
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.786704031904468180198935998460.78670403190446818019893599846
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.287897794976652332792559873730.28789779497665233279255987373
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 42 42  = 723 7\cdot2\cdot3
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(2)(E,1)/2! L^{(2)}(E,1)/2! ≈ 9.51259495555061010356973701359.5125949555506101035697370135
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

9.512594956L(2)(E,1)/2!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2878980.78670442129.512594956\displaystyle 9.512594956 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.287898 \cdot 0.786704 \cdot 42}{1^2} \approx 9.512594956

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 122018.2.a.w

q+q2q3+q44q5q62q7+q82q94q103q11q122q14+4q15+q166q172q18+O(q20) q + q^{2} - q^{3} + q^{4} - 4 q^{5} - q^{6} - 2 q^{7} + q^{8} - 2 q^{9} - 4 q^{10} - 3 q^{11} - q^{12} - 2 q^{14} + 4 q^{15} + q^{16} - 6 q^{17} - 2 q^{18} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 6773760
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 77 I7I_{7} split multiplicative -1 1 7 7
1313 22 I2I_{2}^{*} additive 1 2 8 2
1919 33 IVIV additive 1 2 4 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2G 8.2.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[5, 2, 5, 3], [1, 2, 0, 1], [7, 2, 6, 3], [1, 0, 2, 1], [1, 1, 7, 0], [7, 2, 7, 3]]
 
GL(2,Integers(8)).subgroup(gens)
 
Gens := [[5, 2, 5, 3], [1, 2, 0, 1], [7, 2, 6, 3], [1, 0, 2, 1], [1, 1, 7, 0], [7, 2, 7, 3]];
 
sub<GL(2,Integers(8))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has label 8.2.0.a.1, level 8=23 8 = 2^{3} , index 22, genus 00, and generators

(5253),(1201),(7263),(1021),(1170),(7273)\left(\begin{array}{rr} 5 & 2 \\ 5 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 2 \\ 6 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 7 & 0 \end{array}\right),\left(\begin{array}{rr} 7 & 2 \\ 7 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[8])K:=\Q(E[8]) is a degree-768768 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/8Z)\GL_2(\Z/8\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 61009=132192 61009 = 13^{2} \cdot 19^{2}
77 good 22 61009=132192 61009 = 13^{2} \cdot 19^{2}
1313 additive 9898 722=2192 722 = 2 \cdot 19^{2}
1919 additive 128128 338=2132 338 = 2 \cdot 13^{2}

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 122018w consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 9386a1, its twist by 1313.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.2888.1 Z/2Z\Z/2\Z not in database
66 6.0.66724352.2 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type split ord ord ord ord add ord add ss ord ord ord ord ord ord
λ\lambda-invariant(s) 6 6 2 6 2 - 2 - 2,2 2 2 4 2 2 2
μ\mu-invariant(s) 0 0 0 0 0 - 0 - 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.