y 2 + x y + y = x 3 + x 2 − 17449845 x + 28049357851 y^2+xy+y=x^3+x^2-17449845x+28049357851 y 2 + x y + y = x 3 + x 2 − 1 7 4 4 9 8 4 5 x + 2 8 0 4 9 3 5 7 8 5 1
(homogenize , simplify )
y 2 z + x y z + y z 2 = x 3 + x 2 z − 17449845 x z 2 + 28049357851 z 3 y^2z+xyz+yz^2=x^3+x^2z-17449845xz^2+28049357851z^3 y 2 z + x y z + y z 2 = x 3 + x 2 z − 1 7 4 4 9 8 4 5 x z 2 + 2 8 0 4 9 3 5 7 8 5 1 z 3
(dehomogenize , simplify )
y 2 = x 3 − 22614999147 x + 1309010064891750 y^2=x^3-22614999147x+1309010064891750 y 2 = x 3 − 2 2 6 1 4 9 9 9 1 4 7 x + 1 3 0 9 0 1 0 0 6 4 8 9 1 7 5 0
(homogenize , minimize )
sage: E = EllipticCurve([1, 1, 1, -17449845, 28049357851])
gp: E = ellinit([1, 1, 1, -17449845, 28049357851])
magma: E := EllipticCurve([1, 1, 1, -17449845, 28049357851]);
oscar: E = elliptic_curve([1, 1, 1, -17449845, 28049357851])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z \Z \oplus \Z Z ⊕ Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 2449 , 1986 ) (2449, 1986) ( 2 4 4 9 , 1 9 8 6 ) 0.31066824324895319313417241283 0.31066824324895319313417241283 0 . 3 1 0 6 6 8 2 4 3 2 4 8 9 5 3 1 9 3 1 3 4 1 7 2 4 1 2 8 3 ∞ \infty ∞
( 21703 / 9 , − 33244 / 27 ) (21703/9, -33244/27) ( 2 1 7 0 3 / 9 , − 3 3 2 4 4 / 2 7 ) 2.5994545820609051374640298118 2.5994545820609051374640298118 2 . 5 9 9 4 5 4 5 8 2 0 6 0 9 0 5 1 3 7 4 6 4 0 2 9 8 1 1 8 ∞ \infty ∞
( − 3973 , 188224 ) \left(-3973, 188224\right) ( − 3 9 7 3 , 1 8 8 2 2 4 ) , ( − 3973 , − 184252 ) \left(-3973, -184252\right) ( − 3 9 7 3 , − 1 8 4 2 5 2 ) , ( − 401 , 187236 ) \left(-401, 187236\right) ( − 4 0 1 , 1 8 7 2 3 6 ) , ( − 401 , − 186836 ) \left(-401, -186836\right) ( − 4 0 1 , − 1 8 6 8 3 6 ) , ( 2111 , 23956 ) \left(2111, 23956\right) ( 2 1 1 1 , 2 3 9 5 6 ) , ( 2111 , − 26068 ) \left(2111, -26068\right) ( 2 1 1 1 , − 2 6 0 6 8 ) , ( 2335 , 5292 ) \left(2335, 5292\right) ( 2 3 3 5 , 5 2 9 2 ) , ( 2335 , − 7628 ) \left(2335, -7628\right) ( 2 3 3 5 , − 7 6 2 8 ) , ( 2393 , 362 ) \left(2393, 362\right) ( 2 3 9 3 , 3 6 2 ) , ( 2393 , − 2756 ) \left(2393, -2756\right) ( 2 3 9 3 , − 2 7 5 6 ) , ( 2411 , − 1168 ) \left(2411, -1168\right) ( 2 4 1 1 , − 1 1 6 8 ) , ( 2411 , − 1244 ) \left(2411, -1244\right) ( 2 4 1 1 , − 1 2 4 4 ) , ( 2449 , 1986 ) \left(2449, 1986\right) ( 2 4 4 9 , 1 9 8 6 ) , ( 2449 , − 4436 ) \left(2449, -4436\right) ( 2 4 4 9 , − 4 4 3 6 ) , ( 2563 , 11752 ) \left(2563, 11752\right) ( 2 5 6 3 , 1 1 7 5 2 ) , ( 2563 , − 14316 ) \left(2563, -14316\right) ( 2 5 6 3 , − 1 4 3 1 6 ) , ( 15293 , 1819412 ) \left(15293, 1819412\right) ( 1 5 2 9 3 , 1 8 1 9 4 1 2 ) , ( 15293 , − 1834706 ) \left(15293, -1834706\right) ( 1 5 2 9 3 , − 1 8 3 4 7 0 6 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
122018 122018 1 2 2 0 1 8 = 2 ⋅ 1 3 2 ⋅ 1 9 2 2 \cdot 13^{2} \cdot 19^{2} 2 ⋅ 1 3 2 ⋅ 1 9 2
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
− 13607275941304448 -13607275941304448 − 1 3 6 0 7 2 7 5 9 4 1 3 0 4 4 4 8 = − 1 ⋅ 2 7 ⋅ 1 3 8 ⋅ 1 9 4 -1 \cdot 2^{7} \cdot 13^{8} \cdot 19^{4} − 1 ⋅ 2 7 ⋅ 1 3 8 ⋅ 1 9 4
sage: E.discriminant().factor()
j-invariant :
j j j
=
− 934165699635529 21632 -\frac{934165699635529}{21632} − 2 1 6 3 2 9 3 4 1 6 5 6 9 9 6 3 5 5 2 9 = − 1 ⋅ 2 − 7 ⋅ 1 3 − 2 ⋅ 1 9 2 ⋅ 1372 9 3 -1 \cdot 2^{-7} \cdot 13^{-2} \cdot 19^{2} \cdot 13729^{3} − 1 ⋅ 2 − 7 ⋅ 1 3 − 2 ⋅ 1 9 2 ⋅ 1 3 7 2 9 3
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 2.6184652199810780835210825262 2.6184652199810780835210825262 2 . 6 1 8 4 6 5 2 1 9 9 8 1 0 7 8 0 8 3 5 2 1 0 8 2 5 2 6 2
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 0.35451088152816289549132966145 0.35451088152816289549132966145 0 . 3 5 4 5 1 0 8 8 1 5 2 8 1 6 2 8 9 5 4 9 1 3 2 9 6 6 1 4 5
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.1175495064733663 1.1175495064733663 1 . 1 1 7 5 4 9 5 0 6 4 7 3 3 6 6 3
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 5.262852441479337 5.262852441479337 5 . 2 6 2 8 5 2 4 4 1 4 7 9 3 3 7
Analytic rank :
r a n r_{\mathrm{an}} r a n = 2 2 2
Mordell-Weil rank :
r r r = 2 2 2
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 0.78670403190446818019893599846 0.78670403190446818019893599846 0 . 7 8 6 7 0 4 0 3 1 9 0 4 4 6 8 1 8 0 1 9 8 9 3 5 9 9 8 4 6
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 0.28789779497665233279255987373 0.28789779497665233279255987373 0 . 2 8 7 8 9 7 7 9 4 9 7 6 6 5 2 3 3 2 7 9 2 5 5 9 8 7 3 7 3
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 42 42 4 2
= 7 ⋅ 2 ⋅ 3 7\cdot2\cdot3 7 ⋅ 2 ⋅ 3
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 1 1 1
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ( 2 ) ( E , 1 ) / 2 ! L^{(2)}(E,1)/2! L ( 2 ) ( E , 1 ) / 2 ! ≈ 9.5125949555506101035697370135 9.5125949555506101035697370135 9 . 5 1 2 5 9 4 9 5 5 5 5 0 6 1 0 1 0 3 5 6 9 7 3 7 0 1 3 5
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
9.512594956 ≈ L ( 2 ) ( E , 1 ) / 2 ! = ? # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.287898 ⋅ 0.786704 ⋅ 42 1 2 ≈ 9.512594956 \displaystyle 9.512594956 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.287898 \cdot 0.786704 \cdot 42}{1^2} \approx 9.512594956 9 . 5 1 2 5 9 4 9 5 6 ≈ L ( 2 ) ( E , 1 ) / 2 ! = ? # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 1 2 1 ⋅ 0 . 2 8 7 8 9 8 ⋅ 0 . 7 8 6 7 0 4 ⋅ 4 2 ≈ 9 . 5 1 2 5 9 4 9 5 6
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
122018.2.a.w
q + q 2 − q 3 + q 4 − 4 q 5 − q 6 − 2 q 7 + q 8 − 2 q 9 − 4 q 10 − 3 q 11 − q 12 − 2 q 14 + 4 q 15 + q 16 − 6 q 17 − 2 q 18 + O ( q 20 ) q + q^{2} - q^{3} + q^{4} - 4 q^{5} - q^{6} - 2 q^{7} + q^{8} - 2 q^{9} - 4 q^{10} - 3 q^{11} - q^{12} - 2 q^{14} + 4 q^{15} + q^{16} - 6 q^{17} - 2 q^{18} + O(q^{20}) q + q 2 − q 3 + q 4 − 4 q 5 − q 6 − 2 q 7 + q 8 − 2 q 9 − 4 q 1 0 − 3 q 1 1 − q 1 2 − 2 q 1 4 + 4 q 1 5 + q 1 6 − 6 q 1 7 − 2 q 1 8 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 3 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[5, 2, 5, 3], [1, 2, 0, 1], [7, 2, 6, 3], [1, 0, 2, 1], [1, 1, 7, 0], [7, 2, 7, 3]]
GL(2,Integers(8)).subgroup(gens)
Gens := [[5, 2, 5, 3], [1, 2, 0, 1], [7, 2, 6, 3], [1, 0, 2, 1], [1, 1, 7, 0], [7, 2, 7, 3]];
sub<GL(2,Integers(8))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
label 8.2.0.a.1 ,
level 8 = 2 3 8 = 2^{3} 8 = 2 3 , index 2 2 2 , genus 0 0 0 , and generators
( 5 2 5 3 ) , ( 1 2 0 1 ) , ( 7 2 6 3 ) , ( 1 0 2 1 ) , ( 1 1 7 0 ) , ( 7 2 7 3 ) \left(\begin{array}{rr}
5 & 2 \\
5 & 3
\end{array}\right),\left(\begin{array}{rr}
1 & 2 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
7 & 2 \\
6 & 3
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
2 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 1 \\
7 & 0
\end{array}\right),\left(\begin{array}{rr}
7 & 2 \\
7 & 3
\end{array}\right) ( 5 5 2 3 ) , ( 1 0 2 1 ) , ( 7 6 2 3 ) , ( 1 2 0 1 ) , ( 1 7 1 0 ) , ( 7 7 2 3 ) .
The torsion field K : = Q ( E [ 8 ] ) K:=\Q(E[8]) K : = Q ( E [ 8 ] ) is a degree-768 768 7 6 8 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 8 Z ) \GL_2(\Z/8\Z) GL 2 ( Z / 8 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
split multiplicative
4 4 4
61009 = 1 3 2 ⋅ 1 9 2 61009 = 13^{2} \cdot 19^{2} 6 1 0 0 9 = 1 3 2 ⋅ 1 9 2
7 7 7
good
2 2 2
61009 = 1 3 2 ⋅ 1 9 2 61009 = 13^{2} \cdot 19^{2} 6 1 0 0 9 = 1 3 2 ⋅ 1 9 2
13 13 1 3
additive
98 98 9 8
722 = 2 ⋅ 1 9 2 722 = 2 \cdot 19^{2} 7 2 2 = 2 ⋅ 1 9 2
19 19 1 9
additive
128 128 1 2 8
338 = 2 ⋅ 1 3 2 338 = 2 \cdot 13^{2} 3 3 8 = 2 ⋅ 1 3 2
This curve has no rational isogenies. Its isogeny class 122018w
consists of this curve only.
The minimal quadratic twist of this elliptic curve is
9386a1 , its twist by 13 13 1 3 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
(which is trivial)
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
3 3 3
3.1.2888.1
Z / 2 Z \Z/2\Z Z / 2 Z
not in database
6 6 6
6.0.66724352.2
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
8 8 8
deg 8
Z / 3 Z \Z/3\Z Z / 3 Z
not in database
12 12 1 2
deg 12
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
5
7
11
17
23
37
41
43
47
53
59
61
67
71
73
79
83
89
97