sage:E = EllipticCurve("dk1")
E.isogeny_class()
Elliptic curves in class 122304.dk
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
122304.dk1 |
122304ga4 |
[0,−1,0,−163137,−25307295] |
62275269892/39 |
300699549696 |
[2] |
393216 |
1.5227
|
|
122304.dk2 |
122304ga2 |
[0,−1,0,−10257,−387855] |
61918288/1521 |
2931820609536 |
[2,2] |
196608 |
1.1761
|
|
122304.dk3 |
122304ga1 |
[0,−1,0,−1437,12573] |
2725888/1053 |
126857622528 |
[2] |
98304 |
0.82951
|
Γ0(N)-optimal |
122304.dk4 |
122304ga3 |
[0,−1,0,1503,−1236927] |
48668/85683 |
−660636910682112 |
[2] |
393216 |
1.5227
|
|
sage:E.rank()
The elliptic curves in class 122304.dk have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1+T |
7 | 1 |
13 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1−2T+5T2 |
1.5.ac
|
11 |
1+11T2 |
1.11.a
|
17 |
1+2T+17T2 |
1.17.c
|
19 |
1−4T+19T2 |
1.19.ae
|
23 |
1+23T2 |
1.23.a
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 122304.dk do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.