Properties

Label 122304.dk
Number of curves $4$
Conductor $122304$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("dk1")
 
E.isogeny_class()
 

Elliptic curves in class 122304.dk

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
122304.dk1 122304ga4 \([0, -1, 0, -163137, -25307295]\) \(62275269892/39\) \(300699549696\) \([2]\) \(393216\) \(1.5227\)  
122304.dk2 122304ga2 \([0, -1, 0, -10257, -387855]\) \(61918288/1521\) \(2931820609536\) \([2, 2]\) \(196608\) \(1.1761\)  
122304.dk3 122304ga1 \([0, -1, 0, -1437, 12573]\) \(2725888/1053\) \(126857622528\) \([2]\) \(98304\) \(0.82951\) \(\Gamma_0(N)\)-optimal
122304.dk4 122304ga3 \([0, -1, 0, 1503, -1236927]\) \(48668/85683\) \(-660636910682112\) \([2]\) \(393216\) \(1.5227\)  

Rank

sage: E.rank()
 

The elliptic curves in class 122304.dk have rank \(0\).

Complex multiplication

The elliptic curves in class 122304.dk do not have complex multiplication.

Modular form 122304.2.a.dk

sage: E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} + q^{9} + q^{13} - 2 q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.