E = EllipticCurve("v1")
E.isogeny_class()
Elliptic curves in class 12240v
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
12240.bo3 |
12240v1 |
[0,0,0,−8562,249991] |
5951163357184/1129312125 |
13172296626000 |
[2] |
27648 |
1.2350
|
Γ0(N)-optimal |
12240.bo2 |
12240v2 |
[0,0,0,−41367,−3010826] |
41948679809104/3291890625 |
614345796000000 |
[2,2] |
55296 |
1.5816
|
|
12240.bo1 |
12240v3 |
[0,0,0,−648867,−201177326] |
40472803590982276/281883375 |
210424811904000 |
[2] |
110592 |
1.9281
|
|
12240.bo4 |
12240v4 |
[0,0,0,41253,−13536614] |
10400706415004/112060546875 |
−83652750000000000 |
[4] |
110592 |
1.9281
|
|
The elliptic curves in class 12240v have
rank 0.
The elliptic curves in class 12240v do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.