Properties

Label 12240v
Number of curves 44
Conductor 1224012240
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("v1")
 
E.isogeny_class()
 

Elliptic curves in class 12240v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
12240.bo3 12240v1 [0,0,0,8562,249991][0, 0, 0, -8562, 249991] 5951163357184/11293121255951163357184/1129312125 1317229662600013172296626000 [2][2] 2764827648 1.23501.2350 Γ0(N)\Gamma_0(N)-optimal
12240.bo2 12240v2 [0,0,0,41367,3010826][0, 0, 0, -41367, -3010826] 41948679809104/329189062541948679809104/3291890625 614345796000000614345796000000 [2,2][2, 2] 5529655296 1.58161.5816  
12240.bo1 12240v3 [0,0,0,648867,201177326][0, 0, 0, -648867, -201177326] 40472803590982276/28188337540472803590982276/281883375 210424811904000210424811904000 [2][2] 110592110592 1.92811.9281  
12240.bo4 12240v4 [0,0,0,41253,13536614][0, 0, 0, 41253, -13536614] 10400706415004/11206054687510400706415004/112060546875 83652750000000000-83652750000000000 [4][4] 110592110592 1.92811.9281  

Rank

sage: E.rank()
 

The elliptic curves in class 12240v have rank 00.

Complex multiplication

The elliptic curves in class 12240v do not have complex multiplication.

Modular form 12240.2.a.v

sage: E.q_eigenform(10)
 
q+q54q11+6q13+q174q19+O(q20)q + q^{5} - 4 q^{11} + 6 q^{13} + q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.