Properties

Label 12240v
Number of curves $4$
Conductor $12240$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("v1")
 
E.isogeny_class()
 

Elliptic curves in class 12240v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
12240.bo3 12240v1 \([0, 0, 0, -8562, 249991]\) \(5951163357184/1129312125\) \(13172296626000\) \([2]\) \(27648\) \(1.2350\) \(\Gamma_0(N)\)-optimal
12240.bo2 12240v2 \([0, 0, 0, -41367, -3010826]\) \(41948679809104/3291890625\) \(614345796000000\) \([2, 2]\) \(55296\) \(1.5816\)  
12240.bo1 12240v3 \([0, 0, 0, -648867, -201177326]\) \(40472803590982276/281883375\) \(210424811904000\) \([2]\) \(110592\) \(1.9281\)  
12240.bo4 12240v4 \([0, 0, 0, 41253, -13536614]\) \(10400706415004/112060546875\) \(-83652750000000000\) \([4]\) \(110592\) \(1.9281\)  

Rank

sage: E.rank()
 

The elliptic curves in class 12240v have rank \(0\).

Complex multiplication

The elliptic curves in class 12240v do not have complex multiplication.

Modular form 12240.2.a.v

sage: E.q_eigenform(10)
 
\(q + q^{5} - 4 q^{11} + 6 q^{13} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.