Properties

Label 1254.e
Number of curves 22
Conductor 12541254
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 1254.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1254.e1 1254d1 [1,0,1,206,896][1, 0, 1, -206, 896] 960044289625/195182592960044289625/195182592 195182592195182592 [2][2] 448448 0.306450.30645 Γ0(N)\Gamma_0(N)-optimal
1254.e2 1254d2 [1,0,1,434,5504][1, 0, 1, 434, 5504] 9070486526375/181657048329070486526375/18165704832 18165704832-18165704832 [2][2] 896896 0.653030.65303  

Rank

sage: E.rank()
 

The elliptic curves in class 1254.e have rank 11.

Complex multiplication

The elliptic curves in class 1254.e do not have complex multiplication.

Modular form 1254.2.a.e

sage: E.q_eigenform(10)
 
qq2+q3+q4q62q7q8+q9q11+q124q13+2q14+q16+2q17q18+q19+O(q20)q - q^{2} + q^{3} + q^{4} - q^{6} - 2 q^{7} - q^{8} + q^{9} - q^{11} + q^{12} - 4 q^{13} + 2 q^{14} + q^{16} + 2 q^{17} - q^{18} + q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.