Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 1254.e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1254.e1 | 1254d1 | \([1, 0, 1, -206, 896]\) | \(960044289625/195182592\) | \(195182592\) | \([2]\) | \(448\) | \(0.30645\) | \(\Gamma_0(N)\)-optimal |
1254.e2 | 1254d2 | \([1, 0, 1, 434, 5504]\) | \(9070486526375/18165704832\) | \(-18165704832\) | \([2]\) | \(896\) | \(0.65303\) |
Rank
sage: E.rank()
The elliptic curves in class 1254.e have rank \(1\).
Complex multiplication
The elliptic curves in class 1254.e do not have complex multiplication.Modular form 1254.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.