Properties

Label 1254.g
Number of curves 66
Conductor 12541254
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("g1")
 
E.isogeny_class()
 

Elliptic curves in class 1254.g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1254.g1 1254h5 [1,1,1,42359,3373225][1, 1, 1, -42359, -3373225] 8405459297332260337/521074628405459297332260337/52107462 5210746252107462 [2][2] 20482048 1.08701.0870  
1254.g2 1254h3 [1,1,1,2649,53469][1, 1, 1, -2649, -53469] 2055795133410577/51091044842055795133410577/5109104484 51091044845109104484 [2,2][2, 2] 10241024 0.740460.74046  
1254.g3 1254h6 [1,1,1,1659,92673][1, 1, 1, -1659, -92673] 504985875929137/3362745482118-504985875929137/3362745482118 3362745482118-3362745482118 [2][2] 20482048 1.08701.0870  
1254.g4 1254h2 [1,1,1,229,229][1, 1, 1, -229, -229] 1328460616657/7610977441328460616657/761097744 761097744761097744 [2,4][2, 4] 512512 0.393880.39388  
1254.g5 1254h1 [1,1,1,149,635][1, 1, 1, -149, 635] 365986170577/1765632365986170577/1765632 17656321765632 [4][4] 256256 0.0473100.047310 Γ0(N)\Gamma_0(N)-optimal
1254.g6 1254h4 [1,1,1,911,685][1, 1, 1, 911, -685] 83608233481583/4887382486883608233481583/48873824868 48873824868-48873824868 [4][4] 10241024 0.740460.74046  

Rank

sage: E.rank()
 

The elliptic curves in class 1254.g have rank 11.

Complex multiplication

The elliptic curves in class 1254.g do not have complex multiplication.

Modular form 1254.2.a.g

sage: E.q_eigenform(10)
 
q+q2q3+q42q5q6+q8+q92q10+q11q122q13+2q15+q166q17+q18q19+O(q20)q + q^{2} - q^{3} + q^{4} - 2 q^{5} - q^{6} + q^{8} + q^{9} - 2 q^{10} + q^{11} - q^{12} - 2 q^{13} + 2 q^{15} + q^{16} - 6 q^{17} + q^{18} - q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(124488212244421488424122848214848241)\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.