Properties

Label 12544d
Number of curves 22
Conductor 1254412544
CM Q(2)\Q(\sqrt{-2})
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 12544d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
12544.n2 12544d1 [0,1,0,163,657][0, -1, 0, -163, -657] 80008000 6023628860236288 [2][2] 30723072 0.222410.22241 Γ0(N)\Gamma_0(N)-optimal 8-8
12544.n1 12544d2 [0,1,0,653,5909][0, -1, 0, -653, 5909] 80008000 38551224323855122432 [2][2] 61446144 0.568980.56898   8-8

Rank

sage: E.rank()
 

The elliptic curves in class 12544d have rank 00.

Complex multiplication

Each elliptic curve in class 12544d has complex multiplication by an order in the imaginary quadratic field Q(2)\Q(\sqrt{-2}) .

Modular form 12544.2.a.d

sage: E.q_eigenform(10)
 
q+2q3+q96q11+6q17+2q19+O(q20)q + 2 q^{3} + q^{9} - 6 q^{11} + 6 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.