Properties

Label 12544d
Number of curves $2$
Conductor $12544$
CM \(\Q(\sqrt{-2}) \)
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 12544d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
12544.n2 12544d1 \([0, -1, 0, -163, -657]\) \(8000\) \(60236288\) \([2]\) \(3072\) \(0.22241\) \(\Gamma_0(N)\)-optimal \(-8\)
12544.n1 12544d2 \([0, -1, 0, -653, 5909]\) \(8000\) \(3855122432\) \([2]\) \(6144\) \(0.56898\)   \(-8\)

Rank

sage: E.rank()
 

The elliptic curves in class 12544d have rank \(0\).

Complex multiplication

Each elliptic curve in class 12544d has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-2}) \).

Modular form 12544.2.a.d

sage: E.q_eigenform(10)
 
\(q + 2 q^{3} + q^{9} - 6 q^{11} + 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.