Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 12544d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
12544.n2 | 12544d1 | \([0, -1, 0, -163, -657]\) | \(8000\) | \(60236288\) | \([2]\) | \(3072\) | \(0.22241\) | \(\Gamma_0(N)\)-optimal | \(-8\) |
12544.n1 | 12544d2 | \([0, -1, 0, -653, 5909]\) | \(8000\) | \(3855122432\) | \([2]\) | \(6144\) | \(0.56898\) | \(-8\) |
Rank
sage: E.rank()
The elliptic curves in class 12544d have rank \(0\).
Complex multiplication
Each elliptic curve in class 12544d has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-2}) \).Modular form 12544.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.