Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-149x+635\) | (homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-149xz^2+635z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-193131x+32531814\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(5, 4)$ | $1.1249500312017794659945003721$ | $\infty$ |
$(11, 16)$ | $0$ | $4$ |
Integral points
\( \left(-11, 38\right) \), \( \left(-11, -28\right) \), \( \left(-1, 28\right) \), \( \left(-1, -28\right) \), \( \left(5, 4\right) \), \( \left(5, -10\right) \), \( \left(7, -4\right) \), \( \left(11, 16\right) \), \( \left(11, -28\right) \)
Invariants
Conductor: | $N$ | = | \( 1254 \) | = | $2 \cdot 3 \cdot 11 \cdot 19$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $\Delta$ | = | $1765632$ | = | $2^{8} \cdot 3 \cdot 11^{2} \cdot 19 $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | $j$ | = | \( \frac{365986170577}{1765632} \) | = | $2^{-8} \cdot 3^{-1} \cdot 11^{-2} \cdot 19^{-1} \cdot 23^{3} \cdot 311^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.047310092036443028857864201280$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.047310092036443028857864201280$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $Q$ | ≈ | $0.9081706487055927$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.7321995511818336$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Mordell-Weil rank: | $r$ | = | $ 1$ | comment: Rank
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.1249500312017794659945003721$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $\Omega$ | ≈ | $2.6622759180851482888058856127$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{3}\cdot1\cdot2\cdot1 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: | $ L'(E,1)$ | ≈ | $2.9949273771176336412130174103 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
BSD formula
$\displaystyle 2.994927377 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 2.662276 \cdot 1.124950 \cdot 16}{4^2} \approx 2.994927377$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 256 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
$3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$11$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.24.0.45 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10032 = 2^{4} \cdot 3 \cdot 11 \cdot 19 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 16 \\ 7524 & 7525 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 10028 & 10029 \end{array}\right),\left(\begin{array}{rr} 10017 & 16 \\ 10016 & 17 \end{array}\right),\left(\begin{array}{rr} 7936 & 5 \\ 8403 & 10018 \end{array}\right),\left(\begin{array}{rr} 1265 & 16 \\ 3962 & 2799 \end{array}\right),\left(\begin{array}{rr} 3352 & 1 \\ 6767 & 10 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 8221 & 16 \\ 2480 & 9717 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 9934 & 10019 \end{array}\right)$.
The torsion field $K:=\Q(E[10032])$ is a degree-$9985130496000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10032\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 57 = 3 \cdot 19 \) |
$3$ | nonsplit multiplicative | $4$ | \( 418 = 2 \cdot 11 \cdot 19 \) |
$11$ | split multiplicative | $12$ | \( 114 = 2 \cdot 3 \cdot 19 \) |
$19$ | nonsplit multiplicative | $20$ | \( 66 = 2 \cdot 3 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 1254h
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{57}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{33}) \) | \(\Z/8\Z\) | not in database |
$2$ | \(\Q(\sqrt{209}) \) | \(\Z/8\Z\) | not in database |
$4$ | \(\Q(\sqrt{33}, \sqrt{57})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.8779890495744.2 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/16\Z\) | not in database |
$8$ | deg 8 | \(\Z/16\Z\) | not in database |
$8$ | 8.2.5408027969149872.6 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | nonsplit | ord | ss | split | ord | ord | nonsplit | ss | ord | ss | ord | ord | ord | ord |
$\lambda$-invariant(s) | 5 | 1 | 3 | 1,1 | 2 | 1 | 1 | 1 | 1,1 | 3 | 1,1 | 1 | 1 | 1 | 3 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.