Properties

Label 126350cu
Number of curves $4$
Conductor $126350$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cu1")
 
E.isogeny_class()
 

Elliptic curves in class 126350cu

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
126350.dh4 126350cu1 \([1, -1, 1, 20870, 1843497]\) \(1367631/2800\) \(-2058257293750000\) \([2]\) \(691200\) \(1.6228\) \(\Gamma_0(N)\)-optimal
126350.dh3 126350cu2 \([1, -1, 1, -159630, 19893497]\) \(611960049/122500\) \(90048756601562500\) \([2, 2]\) \(1382400\) \(1.9694\)  
126350.dh2 126350cu3 \([1, -1, 1, -791380, -253022503]\) \(74565301329/5468750\) \(4020033776855468750\) \([2]\) \(2764800\) \(2.3159\)  
126350.dh1 126350cu4 \([1, -1, 1, -2415880, 1445843497]\) \(2121328796049/120050\) \(88247781469531250\) \([2]\) \(2764800\) \(2.3159\)  

Rank

sage: E.rank()
 

The elliptic curves in class 126350cu have rank \(0\).

Complex multiplication

The elliptic curves in class 126350cu do not have complex multiplication.

Modular form 126350.2.a.cu

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{7} + q^{8} - 3 q^{9} + 4 q^{11} - 6 q^{13} + q^{14} + q^{16} - 2 q^{17} - 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.