Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 12675e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
12675.j6 | 12675e1 | \([1, 1, 1, -464838, 121785906]\) | \(147281603041/5265\) | \(397080459140625\) | \([4]\) | \(96768\) | \(1.8903\) | \(\Gamma_0(N)\)-optimal |
12675.j5 | 12675e2 | \([1, 1, 1, -485963, 110082656]\) | \(168288035761/27720225\) | \(2090628617375390625\) | \([2, 2]\) | \(193536\) | \(2.2369\) | |
12675.j4 | 12675e3 | \([1, 1, 1, -2197088, -1149305344]\) | \(15551989015681/1445900625\) | \(109048221091494140625\) | \([2, 2]\) | \(387072\) | \(2.5835\) | |
12675.j7 | 12675e4 | \([1, 1, 1, 887162, 620885156]\) | \(1023887723039/2798036865\) | \(-211024836286152890625\) | \([2]\) | \(387072\) | \(2.5835\) | |
12675.j2 | 12675e5 | \([1, 1, 1, -34328213, -77428596094]\) | \(59319456301170001/594140625\) | \(44809426812744140625\) | \([2, 2]\) | \(774144\) | \(2.9300\) | |
12675.j8 | 12675e6 | \([1, 1, 1, 2556037, -5436624094]\) | \(24487529386319/183539412225\) | \(-13842338855974062890625\) | \([2]\) | \(774144\) | \(2.9300\) | |
12675.j1 | 12675e7 | \([1, 1, 1, -549250088, -4954768596094]\) | \(242970740812818720001/24375\) | \(1838335458984375\) | \([2]\) | \(1548288\) | \(3.2766\) | |
12675.j3 | 12675e8 | \([1, 1, 1, -33504338, -81320581594]\) | \(-55150149867714721/5950927734375\) | \(-448812367916107177734375\) | \([2]\) | \(1548288\) | \(3.2766\) |
Rank
sage: E.rank()
The elliptic curves in class 12675e have rank \(1\).
Complex multiplication
The elliptic curves in class 12675e do not have complex multiplication.Modular form 12675.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 2 & 2 & 4 & 4 \\ 4 & 2 & 4 & 1 & 8 & 8 & 16 & 16 \\ 8 & 4 & 2 & 8 & 1 & 4 & 2 & 2 \\ 8 & 4 & 2 & 8 & 4 & 1 & 8 & 8 \\ 16 & 8 & 4 & 16 & 2 & 8 & 1 & 4 \\ 16 & 8 & 4 & 16 & 2 & 8 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.