Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-2x-2\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-2xz^2-2z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-189x-918\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-1, 0)$ | $0$ | $2$ |
Integral points
\( \left(-1, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 128 \) | = | $2^{7}$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $\Delta$ | = | $128$ | = | $2^{7} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | $j$ | = | \( 10976 \) | = | $2^{5} \cdot 7^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.85642973570222599939430612058$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.2607655910288607632210248581$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $Q$ | ≈ | $0.8884240490394303$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.917437823738973$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Mordell-Weil rank: | $r$ | = | $ 0$ | comment: Rank
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $\Omega$ | ≈ | $3.8853449196005042735933726198$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: | $ L(E,1)$ | ≈ | $0.97133622990012606839834315494 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
BSD formula
$\displaystyle 0.971336230 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 3.885345 \cdot 1.000000 \cdot 1}{2^2} \approx 0.971336230$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 16 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 2 | comment: Manin constant
magma: ManinConstant(E);
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There is only one prime $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II$ | additive | -1 | 7 | 7 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 32.96.0.108 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 32.96.0-32.c.1.3, level \( 32 = 2^{5} \), index $96$, genus $0$, and generators
$\left(\begin{array}{rr} 2 & 3 \\ 9 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 31 \end{array}\right),\left(\begin{array}{rr} 7 & 8 \\ 20 & 23 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 25 & 8 \\ 24 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[32])$ is a degree-$4096$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/32\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 1 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 128b
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 128a2, its twist by $-8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | 2.2.8.1-256.1-b3 |
$4$ | 4.0.512.1 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.4194304.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.67108864.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.9172942848.4 | \(\Z/6\Z\) | not in database |
$16$ | 16.0.18014398509481984.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | 16.0.72057594037927936.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 |
---|---|
Reduction type | add |
$\lambda$-invariant(s) | - |
$\mu$-invariant(s) | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.