Properties

Label 129600.hf
Number of curves 11
Conductor 129600129600
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hf1") E.isogeny_class()
 

Elliptic curves in class 129600.hf

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
129600.hf1 129600v1 [0,0,0,75,500][0, 0, 0, -75, 500] 576-576 81000000-81000000 [][] 2688026880 0.207980.20798 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 129600.hf1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
5511
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 12T+7T2 1 - 2 T + 7 T^{2} 1.7.ac
1111 12T+11T2 1 - 2 T + 11 T^{2} 1.11.ac
1313 1T+13T2 1 - T + 13 T^{2} 1.13.ab
1717 1+3T+17T2 1 + 3 T + 17 T^{2} 1.17.d
1919 12T+19T2 1 - 2 T + 19 T^{2} 1.19.ac
2323 16T+23T2 1 - 6 T + 23 T^{2} 1.23.ag
2929 1+T+29T2 1 + T + 29 T^{2} 1.29.b
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 129600.hf do not have complex multiplication.

Modular form 129600.2.a.hf

Copy content sage:E.q_eigenform(10)
 
q+2q7+2q11+q133q17+2q19+O(q20)q + 2 q^{7} + 2 q^{11} + q^{13} - 3 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display