Properties

Label 129600cc2
Conductor 129600129600
Discriminant 8.707×1015-8.707\times 10^{15}
j-invariant 359374 -\frac{35937}{4}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x389100x11178000y^2=x^3-89100x-11178000 Copy content Toggle raw display (homogenize, simplify)
y2z=x389100xz211178000z3y^2z=x^3-89100xz^2-11178000z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x389100x11178000y^2=x^3-89100x-11178000 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -89100, -11178000])
 
gp: E = ellinit([0, 0, 0, -89100, -11178000])
 
magma: E := EllipticCurve([0, 0, 0, -89100, -11178000]);
 
oscar: E = elliptic_curve([0, 0, 0, -89100, -11178000])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(113339566/441,1206624182336/9261)(113339566/441, 1206624182336/9261)16.12056419468296903602934541116.120564194682969036029345411\infty

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  129600 129600  = 2634522^{6} \cdot 3^{4} \cdot 5^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  8707129344000000-8707129344000000 = 122031256-1 \cdot 2^{20} \cdot 3^{12} \cdot 5^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  359374 -\frac{35937}{4}  = 12233113-1 \cdot 2^{-2} \cdot 3^{3} \cdot 11^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.79593938544843365443005973511.7959393854484336544300597351
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.1471126302766441883914133506-1.1471126302766441883914133506
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.00606837660585141.0060683766058514
Szpiro ratio: σm\sigma_{m} ≈ 3.9059844618396173.905984461839617

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 16.12056419468296903602934541116.120564194682969036029345411
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.137304528063725390317390607700.13730452806372539031739060770
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 2211 2^{2}\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 8.85370583548773767429339224078.8537058354877376742933922407
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

8.853705835L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.13730516.1205644128.853705835\displaystyle 8.853705835 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.137305 \cdot 16.120564 \cdot 4}{1^2} \approx 8.853705835

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 129600.2.a.ir

q+4q7q133q17+4q19+O(q20) q + 4 q^{7} - q^{13} - 3 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 746496
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I10I_{10}^{*} additive 1 6 20 2
33 11 IIII^{*} additive 1 4 12 0
55 11 I0I_0^{*} additive 1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2G 4.8.0.2
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 96, 1], [1, 0, 60, 1], [25, 96, 24, 25], [61, 60, 60, 61], [1, 105, 105, 106], [23, 0, 0, 119], [1, 60, 0, 1], [1, 105, 0, 31], [39, 20, 40, 19], [59, 0, 0, 119], [69, 20, 20, 69]]
 
GL(2,Integers(120)).subgroup(gens)
 
Gens := [[1, 0, 96, 1], [1, 0, 60, 1], [25, 96, 24, 25], [61, 60, 60, 61], [1, 105, 105, 106], [23, 0, 0, 119], [1, 60, 0, 1], [1, 105, 0, 31], [39, 20, 40, 19], [59, 0, 0, 119], [69, 20, 20, 69]];
 
sub<GL(2,Integers(120))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 120=2335 120 = 2^{3} \cdot 3 \cdot 5 , index 128128, genus 11, and generators

(10961),(10601),(25962425),(61606061),(1105105106),(2300119),(16001),(1105031),(39204019),(5900119),(69202069)\left(\begin{array}{rr} 1 & 0 \\ 96 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 60 & 1 \end{array}\right),\left(\begin{array}{rr} 25 & 96 \\ 24 & 25 \end{array}\right),\left(\begin{array}{rr} 61 & 60 \\ 60 & 61 \end{array}\right),\left(\begin{array}{rr} 1 & 105 \\ 105 & 106 \end{array}\right),\left(\begin{array}{rr} 23 & 0 \\ 0 & 119 \end{array}\right),\left(\begin{array}{rr} 1 & 60 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 105 \\ 0 & 31 \end{array}\right),\left(\begin{array}{rr} 39 & 20 \\ 40 & 19 \end{array}\right),\left(\begin{array}{rr} 59 & 0 \\ 0 & 119 \end{array}\right),\left(\begin{array}{rr} 69 & 20 \\ 20 & 69 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[120])K:=\Q(E[120]) is a degree-276480276480 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/120Z)\GL_2(\Z/120\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 2025=3452 2025 = 3^{4} \cdot 5^{2}
33 additive 22 1600=2652 1600 = 2^{6} \cdot 5^{2}
55 additive 1414 5184=2634 5184 = 2^{6} \cdot 3^{4}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 129600cc consists of 2 curves linked by isogenies of degree 3.

Twists

The minimal quadratic twist of this elliptic curve is 162a1, its twist by 120-120.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(30)\Q(\sqrt{-30}) Z/3Z\Z/3\Z not in database
33 3.1.324.1 Z/2Z\Z/2\Z not in database
66 6.0.419904.2 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.2.1679616000.8 Z/4Z\Z/4\Z not in database
66 6.0.1679616000.13 Z/4Z\Z/4\Z not in database
66 6.2.186624000.3 Z/3Z\Z/3\Z not in database
66 6.0.5038848000.24 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1212 deg 12 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1212 deg 12 Z/12Z\Z/12\Z not in database
1212 deg 12 Z/12Z\Z/12\Z not in database
1818 18.0.1376809511370776442839236608000000000.1 Z/9Z\Z/9\Z not in database
1818 18.2.55268479930183339474944000000000.1 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add add ord ss ord ord ord ss ord ord ord ord ord ord
λ\lambda-invariant(s) - - - 7 1,1 1 1 1 1,1 1 1 1 1 1 1
μ\mu-invariant(s) - - - 0 0,0 0 0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.