Properties

Label 129792.f
Number of curves $4$
Conductor $129792$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 129792.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
129792.f1 129792b4 \([0, -1, 0, -437597, -111272955]\) \(58591911104/243\) \(38434065186816\) \([2]\) \(691200\) \(1.8161\)  
129792.f2 129792b3 \([0, -1, 0, -26927, -1788333]\) \(-873722816/59049\) \(-145929341256192\) \([2]\) \(345600\) \(1.4695\)  
129792.f3 129792b2 \([0, -1, 0, -4957, 131845]\) \(85184/3\) \(474494631936\) \([2]\) \(138240\) \(1.0113\)  
129792.f4 129792b1 \([0, -1, 0, 113, 7123]\) \(64/9\) \(-22241935872\) \([2]\) \(69120\) \(0.66476\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 129792.f have rank \(1\).

Complex multiplication

The elliptic curves in class 129792.f do not have complex multiplication.

Modular form 129792.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} - 2 q^{7} + q^{9} - 2 q^{15} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.