Properties

Label 129792n1
Conductor 129792129792
Discriminant 22241935872-22241935872
j-invariant 649 \frac{64}{9}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x2+113x7123y^2=x^3+x^2+113x-7123 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z+113xz27123z3y^2z=x^3+x^2z+113xz^2-7123z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+9126x5220072y^2=x^3+9126x-5220072 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, 113, -7123])
 
gp: E = ellinit([0, 1, 0, 113, -7123])
 
magma: E := EllipticCurve([0, 1, 0, 113, -7123]);
 
oscar: E = elliptic_curve([0, 1, 0, 113, -7123])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(41996/1369,8191431/50653)(41996/1369, 8191431/50653)10.47056771274804377140477289310.470567712748043771404772893\infty
(17,0)(17, 0)0022

Integral points

(17,0) \left(17, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  129792 129792  = 2831322^{8} \cdot 3 \cdot 13^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  22241935872-22241935872 = 12932136-1 \cdot 2^{9} \cdot 3^{2} \cdot 13^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  649 \frac{64}{9}  = 26322^{6} \cdot 3^{-2}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.664759313193284660335592877550.66475931319328466033559287755
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.1375757509574426897540749343-1.1375757509574426897540749343
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.3111012199262271.311101219926227
Szpiro ratio: σm\sigma_{m} ≈ 2.65641831081830532.6564183108183053

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 10.47056771274804377140477289310.470567712748043771404772893
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.570198922446518545570580664770.57019892244651854557058066477
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 222 2\cdot2\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 11.94061285442448576491670774311.940612854424485764916707743
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

11.940612854L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.57019910.47056882211.940612854\displaystyle 11.940612854 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.570199 \cdot 10.470568 \cdot 8}{2^2} \approx 11.940612854

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 129792.2.a.p

q+q3+2q5+2q7+q9+2q152q17+4q19+O(q20) q + q^{3} + 2 q^{5} + 2 q^{7} + q^{9} + 2 q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 69120
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 IIIIII additive -1 8 9 0
33 22 I2I_{2} split multiplicative -1 1 2 2
1313 22 I0I_0^{*} additive 1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.6.0.5
55 5B 5.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[11, 16, 2880, 2771], [2211, 260, 2860, 1067], [3004, 975, 1495, 1054], [378, 2405, 2275, 1522], [2081, 260, 650, 2601], [479, 0, 0, 3119], [3101, 20, 3100, 21], [1, 10, 10, 101], [1, 0, 20, 1], [1, 20, 0, 1]]
 
GL(2,Integers(3120)).subgroup(gens)
 
Gens := [[11, 16, 2880, 2771], [2211, 260, 2860, 1067], [3004, 975, 1495, 1054], [378, 2405, 2275, 1522], [2081, 260, 650, 2601], [479, 0, 0, 3119], [3101, 20, 3100, 21], [1, 10, 10, 101], [1, 0, 20, 1], [1, 20, 0, 1]];
 
sub<GL(2,Integers(3120))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 3120=243513 3120 = 2^{4} \cdot 3 \cdot 5 \cdot 13 , index 288288, genus 55, and generators

(111628802771),(221126028601067),(300497514951054),(378240522751522),(20812606502601),(479003119),(310120310021),(11010101),(10201),(12001)\left(\begin{array}{rr} 11 & 16 \\ 2880 & 2771 \end{array}\right),\left(\begin{array}{rr} 2211 & 260 \\ 2860 & 1067 \end{array}\right),\left(\begin{array}{rr} 3004 & 975 \\ 1495 & 1054 \end{array}\right),\left(\begin{array}{rr} 378 & 2405 \\ 2275 & 1522 \end{array}\right),\left(\begin{array}{rr} 2081 & 260 \\ 650 & 2601 \end{array}\right),\left(\begin{array}{rr} 479 & 0 \\ 0 & 3119 \end{array}\right),\left(\begin{array}{rr} 3101 & 20 \\ 3100 & 21 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 10 & 101 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 20 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[3120])K:=\Q(E[3120]) is a degree-5152702464051527024640 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/3120Z)\GL_2(\Z/3120\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 169=132 169 = 13^{2}
33 split multiplicative 44 43264=28132 43264 = 2^{8} \cdot 13^{2}
1313 additive 8686 768=283 768 = 2^{8} \cdot 3

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 5 and 10.
Its isogeny class 129792n consists of 4 curves linked by isogenies of degrees dividing 10.

Twists

The minimal quadratic twist of this elliptic curve is 768b1, its twist by 52-52.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(2)\Q(\sqrt{-2}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.2.3115008.3 Z/4Z\Z/4\Z not in database
44 4.0.346112.2 Z/10Z\Z/10\Z not in database
88 8.0.17250266382336.3 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.9703274840064.72 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
88 8.0.479174066176.3 Z/2ZZ/10Z\Z/2\Z \oplus \Z/10\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/20Z\Z/20\Z not in database
2020 20.4.6524893465059784576433708335104000000000000000.1 Z/10Z\Z/10\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add split ord ord ss add ord ord ord ord ord ord ord ord ord
λ\lambda-invariant(s) - 2 3 1 1,3 - 1 1 1 1 1 1 1 1 1
μ\mu-invariant(s) - 0 0 0 0,0 - 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.