Properties

Label 129948h
Number of curves $4$
Conductor $129948$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("h1")
 
E.isogeny_class()
 

Elliptic curves in class 129948h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
129948.l2 129948h1 \([0, -1, 0, -154513, -23325686]\) \(216727177216000/2738853\) \(5155573065552\) \([2]\) \(414720\) \(1.5855\) \(\Gamma_0(N)\)-optimal
129948.l3 129948h2 \([0, -1, 0, -150348, -24646824]\) \(-12479332642000/1526829993\) \(-45985285592692992\) \([2]\) \(829440\) \(1.9321\)  
129948.l1 129948h3 \([0, -1, 0, -242713, 6293638]\) \(840033089536000/477272151837\) \(898409462263539408\) \([2]\) \(1244160\) \(2.1348\)  
129948.l4 129948h4 \([0, -1, 0, 960972, 49144824]\) \(3258571509326000/1920843121977\) \(-57852229749112850688\) \([2]\) \(2488320\) \(2.4814\)  

Rank

sage: E.rank()
 

The elliptic curves in class 129948h have rank \(0\).

Complex multiplication

The elliptic curves in class 129948h do not have complex multiplication.

Modular form 129948.2.a.h

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{9} - q^{13} + q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.