Properties

Label 129960.by
Number of curves $2$
Conductor $129960$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("by1")
 
E.isogeny_class()
 

Elliptic curves in class 129960.by

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
129960.by1 129960bc2 \([0, 0, 0, -66063, 2455522]\) \(3631696/1805\) \(15847702344817920\) \([2]\) \(1105920\) \(1.8014\)  
129960.by2 129960bc1 \([0, 0, 0, 15162, 294937]\) \(702464/475\) \(-260652999092400\) \([2]\) \(552960\) \(1.4549\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 129960.by have rank \(1\).

Complex multiplication

The elliptic curves in class 129960.by do not have complex multiplication.

Modular form 129960.2.a.by

sage: E.q_eigenform(10)
 
\(q - q^{5} + 4 q^{7} + 4 q^{11} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.