Properties

Label 1305.f
Number of curves $2$
Conductor $1305$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 1305.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1305.f1 1305g1 \([1, -1, 0, -24, -37]\) \(2146689/145\) \(105705\) \([2]\) \(128\) \(-0.28720\) \(\Gamma_0(N)\)-optimal
1305.f2 1305g2 \([1, -1, 0, 21, -190]\) \(1367631/21025\) \(-15327225\) \([2]\) \(256\) \(0.059378\)  

Rank

sage: E.rank()
 

The elliptic curves in class 1305.f have rank \(0\).

Complex multiplication

The elliptic curves in class 1305.f do not have complex multiplication.

Modular form 1305.2.a.f

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{4} + q^{5} - 2 q^{7} - 3 q^{8} + q^{10} + 6 q^{11} + 2 q^{13} - 2 q^{14} - q^{16} + 2 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.