Properties

Label 1309b1
Conductor 13091309
Discriminant 155771-155771
j-invariant 1231925248155771 -\frac{1231925248}{155771}
CM no
Rank 22
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3x222x+52y^2+y=x^3-x^2-22x+52 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3x2z22xz2+52z3y^2z+yz^2=x^3-x^2z-22xz^2+52z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x328944x+2092176y^2=x^3-28944x+2092176 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 1, -22, 52])
 
gp: E = ellinit([0, -1, 1, -22, 52])
 
magma: E := EllipticCurve([0, -1, 1, -22, 52]);
 
oscar: E = elliptic_curve([0, -1, 1, -22, 52])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ\Z \oplus \Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1,8)(-1, 8)0.349300916856308604918203144590.34930091685630860491820314459\infty
(2,3)(2, 3)0.378109326237032249439791807880.37810932623703224943979180788\infty

Integral points

(5,3) \left(-5, 3\right) , (5,4) \left(-5, -4\right) , (1,8) \left(-1, 8\right) , (1,9) \left(-1, -9\right) , (1,5) \left(1, 5\right) , (1,6) \left(1, -6\right) , (2,3) \left(2, 3\right) , (2,4) \left(2, -4\right) , (4,3) \left(4, 3\right) , (4,4) \left(4, -4\right) , (5,6) \left(5, 6\right) , (5,7) \left(5, -7\right) , (16,59) \left(16, 59\right) , (16,60) \left(16, -60\right) , (50,348) \left(50, 348\right) , (50,349) \left(50, -349\right) , (79,696) \left(79, 696\right) , (79,697) \left(79, -697\right) , (92,876) \left(92, 876\right) , (92,877) \left(92, -877\right) , (14471,1740735) \left(14471, 1740735\right) , (14471,1740736) \left(14471, -1740736\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  1309 1309  = 711177 \cdot 11 \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  155771-155771 = 17211172-1 \cdot 7^{2} \cdot 11 \cdot 17^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  1231925248155771 -\frac{1231925248}{155771}  = 121272111172673-1 \cdot 2^{12} \cdot 7^{-2} \cdot 11^{-1} \cdot 17^{-2} \cdot 67^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.26967502590559402584263931121-0.26967502590559402584263931121
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.26967502590559402584263931121-0.26967502590559402584263931121
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.78354342055771160.7835434205577116
Szpiro ratio: σm\sigma_{m} ≈ 2.9440444643295212.944044464329521

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 2 2
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 2 2
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.106196687003990621323341309630.10619668700399062132334130963
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 3.14553507133329927222475071803.1455350713332992722247507180
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 212 2\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(2)(E,1)/2! L^{(2)}(E,1)/2! ≈ 1.33618161372183077927504094871.3361816137218307792750409487
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.336181614L(2)(E,1)/2!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor213.1455350.1061974121.336181614\displaystyle 1.336181614 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 3.145535 \cdot 0.106197 \cdot 4}{1^2} \approx 1.336181614

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   1309.2.a.a

q2q2q3+2q43q5+2q6q72q9+6q10q112q126q13+2q14+3q154q16+q17+4q184q19+O(q20) q - 2 q^{2} - q^{3} + 2 q^{4} - 3 q^{5} + 2 q^{6} - q^{7} - 2 q^{9} + 6 q^{10} - q^{11} - 2 q^{12} - 6 q^{13} + 2 q^{14} + 3 q^{15} - 4 q^{16} + q^{17} + 4 q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 256
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
77 22 I2I_{2} nonsplit multiplicative 1 1 2 2
1111 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1717 22 I2I_{2} split multiplicative -1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 1, 21, 0], [1, 2, 0, 1], [1, 0, 2, 1], [21, 2, 20, 3], [13, 2, 13, 3]]
 
GL(2,Integers(22)).subgroup(gens)
 
Gens := [[1, 1, 21, 0], [1, 2, 0, 1], [1, 0, 2, 1], [21, 2, 20, 3], [13, 2, 13, 3]];
 
sub<GL(2,Integers(22))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has label 22.2.0.a.1, level 22=211 22 = 2 \cdot 11 , index 22, genus 00, and generators

(11210),(1201),(1021),(212203),(132133)\left(\begin{array}{rr} 1 & 1 \\ 21 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 21 & 2 \\ 20 & 3 \end{array}\right),\left(\begin{array}{rr} 13 & 2 \\ 13 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[22])K:=\Q(E[22]) is a degree-3960039600 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/22Z)\GL_2(\Z/22\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 11 11
77 nonsplit multiplicative 88 187=1117 187 = 11 \cdot 17
1111 nonsplit multiplicative 1212 119=717 119 = 7 \cdot 17
1717 split multiplicative 1818 77=711 77 = 7 \cdot 11

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 1309b consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.44.1 Z/2Z\Z/2\Z not in database
66 6.0.21296.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss ord ord nonsplit nonsplit ord split ord ord ord ord ord ord ord ord
λ\lambda-invariant(s) 6,7 2 6 2 2 2 3 2 2 2 2 2 2 2 2
μ\mu-invariant(s) 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.