sage: E = EllipticCurve([0, -1, 1, -22, 52])
gp: E = ellinit([0, -1, 1, -22, 52])
magma: E := EllipticCurve([0, -1, 1, -22, 52]);
oscar: E = elliptic_curve([0, -1, 1, -22, 52])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z \Z \oplus \Z Z ⊕ Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( − 1 , 8 ) (-1, 8) ( − 1 , 8 ) 0.34930091685630860491820314459 0.34930091685630860491820314459 0 . 3 4 9 3 0 0 9 1 6 8 5 6 3 0 8 6 0 4 9 1 8 2 0 3 1 4 4 5 9 ∞ \infty ∞
( 2 , 3 ) (2, 3) ( 2 , 3 ) 0.37810932623703224943979180788 0.37810932623703224943979180788 0 . 3 7 8 1 0 9 3 2 6 2 3 7 0 3 2 2 4 9 4 3 9 7 9 1 8 0 7 8 8 ∞ \infty ∞
( − 5 , 3 ) \left(-5, 3\right) ( − 5 , 3 ) , ( − 5 , − 4 ) \left(-5, -4\right) ( − 5 , − 4 ) , ( − 1 , 8 ) \left(-1, 8\right) ( − 1 , 8 ) , ( − 1 , − 9 ) \left(-1, -9\right) ( − 1 , − 9 ) , ( 1 , 5 ) \left(1, 5\right) ( 1 , 5 ) , ( 1 , − 6 ) \left(1, -6\right) ( 1 , − 6 ) , ( 2 , 3 ) \left(2, 3\right) ( 2 , 3 ) , ( 2 , − 4 ) \left(2, -4\right) ( 2 , − 4 ) , ( 4 , 3 ) \left(4, 3\right) ( 4 , 3 ) , ( 4 , − 4 ) \left(4, -4\right) ( 4 , − 4 ) , ( 5 , 6 ) \left(5, 6\right) ( 5 , 6 ) , ( 5 , − 7 ) \left(5, -7\right) ( 5 , − 7 ) , ( 16 , 59 ) \left(16, 59\right) ( 1 6 , 5 9 ) , ( 16 , − 60 ) \left(16, -60\right) ( 1 6 , − 6 0 ) , ( 50 , 348 ) \left(50, 348\right) ( 5 0 , 3 4 8 ) , ( 50 , − 349 ) \left(50, -349\right) ( 5 0 , − 3 4 9 ) , ( 79 , 696 ) \left(79, 696\right) ( 7 9 , 6 9 6 ) , ( 79 , − 697 ) \left(79, -697\right) ( 7 9 , − 6 9 7 ) , ( 92 , 876 ) \left(92, 876\right) ( 9 2 , 8 7 6 ) , ( 92 , − 877 ) \left(92, -877\right) ( 9 2 , − 8 7 7 ) , ( 14471 , 1740735 ) \left(14471, 1740735\right) ( 1 4 4 7 1 , 1 7 4 0 7 3 5 ) , ( 14471 , − 1740736 ) \left(14471, -1740736\right) ( 1 4 4 7 1 , − 1 7 4 0 7 3 6 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
1309 1309 1 3 0 9 = 7 ⋅ 11 ⋅ 17 7 \cdot 11 \cdot 17 7 ⋅ 1 1 ⋅ 1 7
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
− 155771 -155771 − 1 5 5 7 7 1 = − 1 ⋅ 7 2 ⋅ 11 ⋅ 1 7 2 -1 \cdot 7^{2} \cdot 11 \cdot 17^{2} − 1 ⋅ 7 2 ⋅ 1 1 ⋅ 1 7 2
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
− 1231925248 155771 -\frac{1231925248}{155771} − 1 5 5 7 7 1 1 2 3 1 9 2 5 2 4 8 = − 1 ⋅ 2 12 ⋅ 7 − 2 ⋅ 1 1 − 1 ⋅ 1 7 − 2 ⋅ 6 7 3 -1 \cdot 2^{12} \cdot 7^{-2} \cdot 11^{-1} \cdot 17^{-2} \cdot 67^{3} − 1 ⋅ 2 1 2 ⋅ 7 − 2 ⋅ 1 1 − 1 ⋅ 1 7 − 2 ⋅ 6 7 3
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ − 0.26967502590559402584263931121 -0.26967502590559402584263931121 − 0 . 2 6 9 6 7 5 0 2 5 9 0 5 5 9 4 0 2 5 8 4 2 6 3 9 3 1 1 2 1
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 0.26967502590559402584263931121 -0.26967502590559402584263931121 − 0 . 2 6 9 6 7 5 0 2 5 9 0 5 5 9 4 0 2 5 8 4 2 6 3 9 3 1 1 2 1
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.7835434205577116 0.7835434205577116 0 . 7 8 3 5 4 3 4 2 0 5 5 7 7 1 1 6
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 2.944044464329521 2.944044464329521 2 . 9 4 4 0 4 4 4 6 4 3 2 9 5 2 1
Analytic rank :
r a n r_{\mathrm{an}} r a n = 2 2 2
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 2 2 2
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 0.10619668700399062132334130963 0.10619668700399062132334130963 0 . 1 0 6 1 9 6 6 8 7 0 0 3 9 9 0 6 2 1 3 2 3 3 4 1 3 0 9 6 3
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 3.1455350713332992722247507180 3.1455350713332992722247507180 3 . 1 4 5 5 3 5 0 7 1 3 3 3 2 9 9 2 7 2 2 2 4 7 5 0 7 1 8 0
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 4 4 4
= 2 ⋅ 1 ⋅ 2 2\cdot1\cdot2 2 ⋅ 1 ⋅ 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 1 1 1
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ( 2 ) ( E , 1 ) / 2 ! L^{(2)}(E,1)/2! L ( 2 ) ( E , 1 ) / 2 ! ≈ 1.3361816137218307792750409487 1.3361816137218307792750409487 1 . 3 3 6 1 8 1 6 1 3 7 2 1 8 3 0 7 7 9 2 7 5 0 4 0 9 4 8 7
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
1.336181614 ≈ L ( 2 ) ( E , 1 ) / 2 ! = ? # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 3.145535 ⋅ 0.106197 ⋅ 4 1 2 ≈ 1.336181614 \begin{aligned} 1.336181614 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 3.145535 \cdot 0.106197 \cdot 4}{1^2} \\ & \approx 1.336181614\end{aligned} 1 . 3 3 6 1 8 1 6 1 4 ≈ L ( 2 ) ( E , 1 ) / 2 ! = ? # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 1 2 1 ⋅ 3 . 1 4 5 5 3 5 ⋅ 0 . 1 0 6 1 9 7 ⋅ 4 ≈ 1 . 3 3 6 1 8 1 6 1 4
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([0, -1, 1, -22, 52]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([0, -1, 1, -22, 52]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
1309.2.a.a
q − 2 q 2 − q 3 + 2 q 4 − 3 q 5 + 2 q 6 − q 7 − 2 q 9 + 6 q 10 − q 11 − 2 q 12 − 6 q 13 + 2 q 14 + 3 q 15 − 4 q 16 + q 17 + 4 q 18 − 4 q 19 + O ( q 20 ) q - 2 q^{2} - q^{3} + 2 q^{4} - 3 q^{5} + 2 q^{6} - q^{7} - 2 q^{9} + 6 q^{10} - q^{11} - 2 q^{12} - 6 q^{13} + 2 q^{14} + 3 q^{15} - 4 q^{16} + q^{17} + 4 q^{18} - 4 q^{19} + O(q^{20}) q − 2 q 2 − q 3 + 2 q 4 − 3 q 5 + 2 q 6 − q 7 − 2 q 9 + 6 q 1 0 − q 1 1 − 2 q 1 2 − 6 q 1 3 + 2 q 1 4 + 3 q 1 5 − 4 q 1 6 + q 1 7 + 4 q 1 8 − 4 q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is semistable .
There
are 3 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ .
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[1, 1, 21, 0], [1, 2, 0, 1], [1, 0, 2, 1], [21, 2, 20, 3], [13, 2, 13, 3]]
GL(2,Integers(22)).subgroup(gens)
magma: Gens := [[1, 1, 21, 0], [1, 2, 0, 1], [1, 0, 2, 1], [21, 2, 20, 3], [13, 2, 13, 3]];
sub<GL(2,Integers(22))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
label 22.2.0.a.1 ,
level 22 = 2 ⋅ 11 22 = 2 \cdot 11 2 2 = 2 ⋅ 1 1 , index 2 2 2 , genus 0 0 0 , and generators
( 1 1 21 0 ) , ( 1 2 0 1 ) , ( 1 0 2 1 ) , ( 21 2 20 3 ) , ( 13 2 13 3 ) \left(\begin{array}{rr}
1 & 1 \\
21 & 0
\end{array}\right),\left(\begin{array}{rr}
1 & 2 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
2 & 1
\end{array}\right),\left(\begin{array}{rr}
21 & 2 \\
20 & 3
\end{array}\right),\left(\begin{array}{rr}
13 & 2 \\
13 & 3
\end{array}\right) ( 1 2 1 1 0 ) , ( 1 0 2 1 ) , ( 1 2 0 1 ) , ( 2 1 2 0 2 3 ) , ( 1 3 1 3 2 3 ) .
The torsion field K : = Q ( E [ 22 ] ) K:=\Q(E[22]) K : = Q ( E [ 2 2 ] ) is a degree-39600 39600 3 9 6 0 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 22 Z ) \GL_2(\Z/22\Z) GL 2 ( Z / 2 2 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
good
2 2 2
11 11 1 1
7 7 7
nonsplit multiplicative
8 8 8
187 = 11 ⋅ 17 187 = 11 \cdot 17 1 8 7 = 1 1 ⋅ 1 7
11 11 1 1
nonsplit multiplicative
12 12 1 2
119 = 7 ⋅ 17 119 = 7 \cdot 17 1 1 9 = 7 ⋅ 1 7
17 17 1 7
split multiplicative
18 18 1 8
77 = 7 ⋅ 11 77 = 7 \cdot 11 7 7 = 7 ⋅ 1 1
gp: ellisomat(E)
This curve has no rational isogenies. Its isogeny class 1309b
consists of this curve only.
This elliptic curve is its own minimal quadratic twist .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
(which is trivial)
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
3 3 3
3.1.44.1
Z / 2 Z \Z/2\Z Z / 2 Z
not in database
6 6 6
6.0.21296.1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
8 8 8
deg 8
Z / 3 Z \Z/3\Z Z / 3 Z
not in database
12 12 1 2
deg 12
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
5
13
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97