Properties

Label 131784d
Number of curves 11
Conductor 131784131784
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Elliptic curves in class 131784d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
131784.o1 131784d1 [0,1,0,15799,551883][0, 1, 0, 15799, 551883] 70575104/6173170575104/61731 381449285616384-381449285616384 [][] 496128496128 1.48541.4854 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 131784d1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331+T1 + T
171711
19191+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 1+T+5T2 1 + T + 5 T^{2} 1.5.b
77 13T+7T2 1 - 3 T + 7 T^{2} 1.7.ad
1111 1+2T+11T2 1 + 2 T + 11 T^{2} 1.11.c
1313 1+13T2 1 + 13 T^{2} 1.13.a
2323 1+6T+23T2 1 + 6 T + 23 T^{2} 1.23.g
2929 1+10T+29T2 1 + 10 T + 29 T^{2} 1.29.k
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 131784d do not have complex multiplication.

Modular form 131784.2.a.d

Copy content sage:E.q_eigenform(10)
 
q+q3q5+3q7+q9+5q112q13q15+q19+O(q20)q + q^{3} - q^{5} + 3 q^{7} + q^{9} + 5 q^{11} - 2 q^{13} - q^{15} + q^{19} + O(q^{20}) Copy content Toggle raw display