sage:E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 131784d
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
131784.o1 |
131784d1 |
[0,1,0,15799,551883] |
70575104/61731 |
−381449285616384 |
[] |
496128 |
1.4854
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curve 131784d1 has
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1+T |
17 | 1 |
19 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+T+5T2 |
1.5.b
|
7 |
1−3T+7T2 |
1.7.ad
|
11 |
1+2T+11T2 |
1.11.c
|
13 |
1+13T2 |
1.13.a
|
23 |
1+6T+23T2 |
1.23.g
|
29 |
1+10T+29T2 |
1.29.k
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 131784d do not have complex multiplication.
sage:E.q_eigenform(10)