Properties

Label 131784d
Number of curves $1$
Conductor $131784$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 131784d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
131784.o1 131784d1 \([0, 1, 0, 15799, 551883]\) \(70575104/61731\) \(-381449285616384\) \([]\) \(496128\) \(1.4854\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 131784d1 has rank \(0\).

Complex multiplication

The elliptic curves in class 131784d do not have complex multiplication.

Modular form 131784.2.a.d

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + 3 q^{7} + q^{9} + 5 q^{11} - 2 q^{13} - q^{15} + q^{19} + O(q^{20})\) Copy content Toggle raw display