Properties

Label 13225.l
Number of curves $1$
Conductor $13225$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("l1")
 
E.isogeny_class()
 

Elliptic curves in class 13225.l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
13225.l1 13225d1 \([1, 1, 0, -1425, -21310]\) \(1053224375\) \(304175\) \([]\) \(7200\) \(0.34756\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 13225.l1 has rank \(0\).

Complex multiplication

The elliptic curves in class 13225.l do not have complex multiplication.

Modular form 13225.2.a.l

sage: E.q_eigenform(10)
 
\(q + q^{2} + 2 q^{3} - q^{4} + 2 q^{6} + 5 q^{7} - 3 q^{8} + q^{9} + 5 q^{11} - 2 q^{12} + 3 q^{13} + 5 q^{14} - q^{16} + q^{18} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display