Properties

Label 1323.d
Number of curves $1$
Conductor $1323$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 1323.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1323.d1 1323g1 \([1, -1, 1, -4052, -353510]\) \(-147\) \(-50039642934603\) \([]\) \(3780\) \(1.3120\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1323.d1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1323.d do not have complex multiplication.

Modular form 1323.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - 4 q^{5} + 3 q^{8} + 4 q^{10} - 2 q^{11} - q^{13} - q^{16} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display