Properties

Label 1323.d
Number of curves 11
Conductor 13231323
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 1323.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1323.d1 1323g1 [1,1,1,4052,353510][1, -1, 1, -4052, -353510] 147-147 50039642934603-50039642934603 [][] 37803780 1.31201.3120 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1323.d1 has rank 00.

Complex multiplication

The elliptic curves in class 1323.d do not have complex multiplication.

Modular form 1323.2.a.d

sage: E.q_eigenform(10)
 
qq2q44q5+3q8+4q102q11q13q166q174q19+O(q20)q - q^{2} - q^{4} - 4 q^{5} + 3 q^{8} + 4 q^{10} - 2 q^{11} - q^{13} - q^{16} - 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display