Properties

Label 132300.c
Number of curves $2$
Conductor $132300$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 132300.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
132300.c1 132300bb1 \([0, 0, 0, -793800, -273199500]\) \(-5971968/25\) \(-231568526700000000\) \([]\) \(1959552\) \(2.1869\) \(\Gamma_0(N)\)-optimal
132300.c2 132300bb2 \([0, 0, 0, 1852200, -1440085500]\) \(8429568/15625\) \(-1302572962687500000000\) \([]\) \(5878656\) \(2.7362\)  

Rank

sage: E.rank()
 

The elliptic curves in class 132300.c have rank \(0\).

Complex multiplication

The elliptic curves in class 132300.c do not have complex multiplication.

Modular form 132300.2.a.c

sage: E.q_eigenform(10)
 
\(q - 6 q^{11} - q^{13} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.