Properties

Label 133570k
Number of curves $3$
Conductor $133570$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("k1")
 
E.isogeny_class()
 

Elliptic curves in class 133570k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
133570.v1 133570k1 \([1, 1, 1, -19321, -1041767]\) \(-16954786009/370\) \(-17406975970\) \([]\) \(256608\) \(1.0810\) \(\Gamma_0(N)\)-optimal
133570.v2 133570k2 \([1, 1, 1, -6686, -2360861]\) \(-702595369/50653000\) \(-2383015010293000\) \([]\) \(769824\) \(1.6303\)  
133570.v3 133570k3 \([1, 1, 1, 60099, 63248723]\) \(510273943271/37000000000\) \(-1740697597000000000\) \([]\) \(2309472\) \(2.1796\)  

Rank

sage: E.rank()
 

The elliptic curves in class 133570k have rank \(1\).

Complex multiplication

The elliptic curves in class 133570k do not have complex multiplication.

Modular form 133570.2.a.k

sage: E.q_eigenform(10)
 
\(q + q^{2} + 2 q^{3} + q^{4} - q^{5} + 2 q^{6} - q^{7} + q^{8} + q^{9} - q^{10} + 3 q^{11} + 2 q^{12} + 4 q^{13} - q^{14} - 2 q^{15} + q^{16} + 3 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.