Show commands:
SageMath
E = EllipticCurve("k1")
E.isogeny_class()
Elliptic curves in class 133570k
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
133570.v1 | 133570k1 | \([1, 1, 1, -19321, -1041767]\) | \(-16954786009/370\) | \(-17406975970\) | \([]\) | \(256608\) | \(1.0810\) | \(\Gamma_0(N)\)-optimal |
133570.v2 | 133570k2 | \([1, 1, 1, -6686, -2360861]\) | \(-702595369/50653000\) | \(-2383015010293000\) | \([]\) | \(769824\) | \(1.6303\) | |
133570.v3 | 133570k3 | \([1, 1, 1, 60099, 63248723]\) | \(510273943271/37000000000\) | \(-1740697597000000000\) | \([]\) | \(2309472\) | \(2.1796\) |
Rank
sage: E.rank()
The elliptic curves in class 133570k have rank \(1\).
Complex multiplication
The elliptic curves in class 133570k do not have complex multiplication.Modular form 133570.2.a.k
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.