Properties

Label 1350.d
Number of curves 22
Conductor 13501350
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 1350.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1350.d1 1350g2 [1,1,0,35817,2600659][1, -1, 0, -35817, -2600659] 16522921323/4000-16522921323/4000 1230187500000-1230187500000 [][] 43204320 1.30871.3087  
1350.d2 1350g1 [1,1,0,183,12659][1, -1, 0, 183, -12659] 1601613/1638401601613/163840 69120000000-69120000000 [][] 14401440 0.759350.75935 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1350.d have rank 00.

Complex multiplication

The elliptic curves in class 1350.d do not have complex multiplication.

Modular form 1350.2.a.d

sage: E.q_eigenform(10)
 
qq2+q42q7q8+3q115q13+2q14+q16+3q174q19+O(q20)q - q^{2} + q^{4} - 2 q^{7} - q^{8} + 3 q^{11} - 5 q^{13} + 2 q^{14} + q^{16} + 3 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.