Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 1350.d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1350.d1 | 1350g2 | \([1, -1, 0, -35817, -2600659]\) | \(-16522921323/4000\) | \(-1230187500000\) | \([]\) | \(4320\) | \(1.3087\) | |
1350.d2 | 1350g1 | \([1, -1, 0, 183, -12659]\) | \(1601613/163840\) | \(-69120000000\) | \([]\) | \(1440\) | \(0.75935\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 1350.d have rank \(0\).
Complex multiplication
The elliptic curves in class 1350.d do not have complex multiplication.Modular form 1350.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.