Properties

Label 1350.m
Number of curves 22
Conductor 13501350
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("m1")
 
E.isogeny_class()
 

Elliptic curves in class 1350.m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1350.m1 1350p2 [1,1,1,455,3647][1, -1, 1, -455, 3647] 68450475/409668450475/4096 622080000622080000 [3][3] 864864 0.440130.44013  
1350.m2 1350p1 [1,1,1,80,253][1, -1, 1, -80, -253] 3316275/163316275/16 270000270000 [][] 288288 0.10918-0.10918 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1350.m have rank 11.

Complex multiplication

The elliptic curves in class 1350.m do not have complex multiplication.

Modular form 1350.2.a.m

sage: E.q_eigenform(10)
 
q+q2+q44q7+q83q11q134q14+q16+2q19+O(q20)q + q^{2} + q^{4} - 4 q^{7} + q^{8} - 3 q^{11} - q^{13} - 4 q^{14} + q^{16} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.