Properties

Label 1350.m
Number of curves $2$
Conductor $1350$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("m1")
 
E.isogeny_class()
 

Elliptic curves in class 1350.m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1350.m1 1350p2 \([1, -1, 1, -455, 3647]\) \(68450475/4096\) \(622080000\) \([3]\) \(864\) \(0.44013\)  
1350.m2 1350p1 \([1, -1, 1, -80, -253]\) \(3316275/16\) \(270000\) \([]\) \(288\) \(-0.10918\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1350.m have rank \(1\).

Complex multiplication

The elliptic curves in class 1350.m do not have complex multiplication.

Modular form 1350.2.a.m

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 4 q^{7} + q^{8} - 3 q^{11} - q^{13} - 4 q^{14} + q^{16} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.