sage:E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 135252e
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
135252.g1 |
135252e1 |
[0,0,0,−3249516,−2254590439] |
13478411517952/304317 |
85677592235790672 |
[2] |
2211840 |
2.3632
|
Γ0(N)-optimal |
135252.g2 |
135252e2 |
[0,0,0,−3132471,−2424516370] |
−754612278352/127035441 |
−572250158275316541696 |
[2] |
4423680 |
2.7098
|
|
sage:E.rank()
The elliptic curves in class 135252e have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
13 | 1+T |
17 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+3T+5T2 |
1.5.d
|
7 |
1+T+7T2 |
1.7.b
|
11 |
1−4T+11T2 |
1.11.ae
|
19 |
1−7T+19T2 |
1.19.ah
|
23 |
1+9T+23T2 |
1.23.j
|
29 |
1+29T2 |
1.29.a
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 135252e do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.