Properties

Label 135252e
Number of curves $2$
Conductor $135252$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 135252e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
135252.g1 135252e1 \([0, 0, 0, -3249516, -2254590439]\) \(13478411517952/304317\) \(85677592235790672\) \([2]\) \(2211840\) \(2.3632\) \(\Gamma_0(N)\)-optimal
135252.g2 135252e2 \([0, 0, 0, -3132471, -2424516370]\) \(-754612278352/127035441\) \(-572250158275316541696\) \([2]\) \(4423680\) \(2.7098\)  

Rank

sage: E.rank()
 

The elliptic curves in class 135252e have rank \(1\).

Complex multiplication

The elliptic curves in class 135252e do not have complex multiplication.

Modular form 135252.2.a.e

sage: E.q_eigenform(10)
 
\(q - 2 q^{5} - 2 q^{7} - 2 q^{11} - q^{13} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.