Properties

Label 135424j1
Conductor 135424135424
Discriminant 7579437516875794375168
j-invariant 8000 8000
CM yes (D=8D=-8)
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x21763x+25823y^2=x^3-x^2-1763x+25823 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z1763xz2+25823z3y^2z=x^3-x^2z-1763xz^2+25823z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3142830x+18396504y^2=x^3-142830x+18396504 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -1763, 25823])
 
gp: E = ellinit([0, -1, 0, -1763, 25823])
 
magma: E := EllipticCurve([0, -1, 0, -1763, 25823]);
 
oscar: E = elliptic_curve([0, -1, 0, -1763, 25823])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(2533/9,125902/27)(2533/9, 125902/27)4.38046020352387241851031965154.3804602035238724185103196515\infty
(31,0)(31, 0)0022

Integral points

(31,0) \left(31, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  135424 135424  = 282322^{8} \cdot 23^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  7579437516875794375168 = 292362^{9} \cdot 23^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  8000 8000  = 26532^{6} \cdot 5^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z[2]\Z[\sqrt{-2}]    (potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = N(U(1))N(\mathrm{U}(1))
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.817200867324708070938482749560.81720086732470807093848274956
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.2704066260598257565278177574-1.2704066260598257565278177574
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.90297674201708890.9029767420170889
Szpiro ratio: σm\sigma_{m} ≈ 2.8806710313232162.880671031323216

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 4.38046020352387241851031965154.3804602035238724185103196515
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.05046519443606523937797059061.0504651944360652393779705906
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 222 2\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 9.20304195882830110195400664479.2030419588283011019540066447
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

9.203041959L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.0504654.3804608229.203041959\displaystyle 9.203041959 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.050465 \cdot 4.380460 \cdot 8}{2^2} \approx 9.203041959

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 135424.2.a.t

q+2q3+q96q11+6q172q19+O(q20) q + 2 q^{3} + q^{9} - 6 q^{11} + 6 q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 101376
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 IIIIII additive -1 8 9 0
2323 44 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 529=232 529 = 23^{2}
2323 additive 266266 256=28 256 = 2^{8}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 135424j consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 256a1, its twist by 9292.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(2)\Q(\sqrt{2}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.4.1083392.2 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 4.0.3250176.3 Z/6Z\Z/6\Z not in database
44 4.2.9750528.3 Z/6Z\Z/6\Z not in database
88 8.0.18779811610624.9 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.95072796278784.114 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
88 8.0.42254576123904.11 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
88 8.4.380291185115136.29 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1212 deg 12 Z/18Z\Z/18\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/6ZZ/6Z\Z/6\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
2020 20.0.3519348609992641341412717262560728973312.2 Z/22Z\Z/22\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add ord ss ss ord ss ord ord add ss ss ss ord ord ss
λ\lambda-invariant(s) - 1 1,1 1,1 1 1,1 1 1 - 1,1 1,1 1,1 1 1 1,1
μ\mu-invariant(s) - 0 0,0 0,0 0 0,0 0 0 - 0,0 0,0 0,0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.