Properties

Label 136710.gl
Number of curves $2$
Conductor $136710$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("gl1")
 
E.isogeny_class()
 

Elliptic curves in class 136710.gl

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
136710.gl1 136710cm1 \([1, -1, 1, -34922, -2940759]\) \(-1482713947827/325058560\) \(-1032555992186880\) \([]\) \(762048\) \(1.6016\) \(\Gamma_0(N)\)-optimal
136710.gl2 136710cm2 \([1, -1, 1, 247318, 17656489]\) \(722458663317/476656000\) \(-1103785276627152000\) \([]\) \(2286144\) \(2.1509\)  

Rank

sage: E.rank()
 

The elliptic curves in class 136710.gl have rank \(0\).

Complex multiplication

The elliptic curves in class 136710.gl do not have complex multiplication.

Modular form 136710.2.a.gl

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{5} + q^{8} + q^{10} + 3 q^{11} + 4 q^{13} + q^{16} + 6 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.